- Docs Home
- About TiDB
- Quick Start
- Develop
- Overview
- Quick Start
- Build a TiDB Cluster in TiDB Cloud (Developer Tier)
- CRUD SQL in TiDB
- Build a Simple CRUD App with TiDB
- Example Applications
- Connect to TiDB
- Design Database Schema
- Write Data
- Read Data
- Transaction
- Optimize
- Troubleshoot
- Reference
- Cloud Native Development Environment
- Third-party Support
- Deploy
- Software and Hardware Requirements
- Environment Configuration Checklist
- Plan Cluster Topology
- Install and Start
- Verify Cluster Status
- Test Cluster Performance
- Migrate
- Overview
- Migration Tools
- Migration Scenarios
- Migrate from Aurora
- Migrate MySQL of Small Datasets
- Migrate MySQL of Large Datasets
- Migrate and Merge MySQL Shards of Small Datasets
- Migrate and Merge MySQL Shards of Large Datasets
- Migrate from CSV Files
- Migrate from SQL Files
- Migrate from One TiDB Cluster to Another TiDB Cluster
- Migrate from TiDB to MySQL-compatible Databases
- Advanced Migration
- Integrate
- Overview
- Integration Scenarios
- Maintain
- Monitor and Alert
- Troubleshoot
- TiDB Troubleshooting Map
- Identify Slow Queries
- Analyze Slow Queries
- SQL Diagnostics
- Identify Expensive Queries Using Top SQL
- Identify Expensive Queries Using Logs
- Statement Summary Tables
- Troubleshoot Hotspot Issues
- Troubleshoot Increased Read and Write Latency
- Save and Restore the On-Site Information of a Cluster
- Troubleshoot Cluster Setup
- Troubleshoot High Disk I/O Usage
- Troubleshoot Lock Conflicts
- Troubleshoot TiFlash
- Troubleshoot Write Conflicts in Optimistic Transactions
- Troubleshoot Inconsistency Between Data and Indexes
- Performance Tuning
- Tuning Guide
- Configuration Tuning
- System Tuning
- Software Tuning
- SQL Tuning
- Overview
- Understanding the Query Execution Plan
- SQL Optimization Process
- Overview
- Logic Optimization
- Physical Optimization
- Prepare Execution Plan Cache
- Control Execution Plans
- Tutorials
- TiDB Tools
- Overview
- Use Cases
- Download
- TiUP
- Documentation Map
- Overview
- Terminology and Concepts
- Manage TiUP Components
- FAQ
- Troubleshooting Guide
- Command Reference
- Overview
- TiUP Commands
- TiUP Cluster Commands
- Overview
- tiup cluster audit
- tiup cluster check
- tiup cluster clean
- tiup cluster deploy
- tiup cluster destroy
- tiup cluster disable
- tiup cluster display
- tiup cluster edit-config
- tiup cluster enable
- tiup cluster help
- tiup cluster import
- tiup cluster list
- tiup cluster patch
- tiup cluster prune
- tiup cluster reload
- tiup cluster rename
- tiup cluster replay
- tiup cluster restart
- tiup cluster scale-in
- tiup cluster scale-out
- tiup cluster start
- tiup cluster stop
- tiup cluster template
- tiup cluster upgrade
- TiUP DM Commands
- Overview
- tiup dm audit
- tiup dm deploy
- tiup dm destroy
- tiup dm disable
- tiup dm display
- tiup dm edit-config
- tiup dm enable
- tiup dm help
- tiup dm import
- tiup dm list
- tiup dm patch
- tiup dm prune
- tiup dm reload
- tiup dm replay
- tiup dm restart
- tiup dm scale-in
- tiup dm scale-out
- tiup dm start
- tiup dm stop
- tiup dm template
- tiup dm upgrade
- TiDB Cluster Topology Reference
- DM Cluster Topology Reference
- Mirror Reference Guide
- TiUP Components
- PingCAP Clinic Diagnostic Service
- TiDB Operator
- Dumpling
- TiDB Lightning
- TiDB Data Migration
- About TiDB Data Migration
- Architecture
- Quick Start
- Deploy a DM cluster
- Tutorials
- Advanced Tutorials
- Maintain
- Cluster Upgrade
- Tools
- Performance Tuning
- Manage Data Sources
- Manage Tasks
- Export and Import Data Sources and Task Configurations of Clusters
- Handle Alerts
- Daily Check
- Reference
- Architecture
- Command Line
- Configuration Files
- OpenAPI
- Compatibility Catalog
- Secure
- Monitoring and Alerts
- Error Codes
- Glossary
- Example
- Troubleshoot
- Release Notes
- Backup & Restore (BR)
- Point-in-Time Recovery
- TiDB Binlog
- TiCDC
- Dumpling
- sync-diff-inspector
- TiSpark
- Reference
- Cluster Architecture
- Key Monitoring Metrics
- Secure
- Privileges
- SQL
- SQL Language Structure and Syntax
- SQL Statements
ADD COLUMN
ADD INDEX
ADMIN
ADMIN CANCEL DDL
ADMIN CHECKSUM TABLE
ADMIN CHECK [TABLE|INDEX]
ADMIN SHOW DDL [JOBS|QUERIES]
ADMIN SHOW TELEMETRY
ALTER DATABASE
ALTER INDEX
ALTER INSTANCE
ALTER PLACEMENT POLICY
ALTER TABLE
ALTER TABLE COMPACT
ALTER TABLE SET TIFLASH MODE
ALTER USER
ANALYZE TABLE
BACKUP
BATCH
BEGIN
CHANGE COLUMN
COMMIT
CHANGE DRAINER
CHANGE PUMP
CREATE [GLOBAL|SESSION] BINDING
CREATE DATABASE
CREATE INDEX
CREATE PLACEMENT POLICY
CREATE ROLE
CREATE SEQUENCE
CREATE TABLE LIKE
CREATE TABLE
CREATE USER
CREATE VIEW
DEALLOCATE
DELETE
DESC
DESCRIBE
DO
DROP [GLOBAL|SESSION] BINDING
DROP COLUMN
DROP DATABASE
DROP INDEX
DROP PLACEMENT POLICY
DROP ROLE
DROP SEQUENCE
DROP STATS
DROP TABLE
DROP USER
DROP VIEW
EXECUTE
EXPLAIN ANALYZE
EXPLAIN
FLASHBACK TABLE
FLUSH PRIVILEGES
FLUSH STATUS
FLUSH TABLES
GRANT <privileges>
GRANT <role>
INSERT
KILL [TIDB]
LOAD DATA
LOAD STATS
MODIFY COLUMN
PREPARE
RECOVER TABLE
RENAME INDEX
RENAME TABLE
REPLACE
RESTORE
REVOKE <privileges>
REVOKE <role>
ROLLBACK
SAVEPOINT
SELECT
SET DEFAULT ROLE
SET [NAMES|CHARACTER SET]
SET PASSWORD
SET ROLE
SET TRANSACTION
SET [GLOBAL|SESSION] <variable>
SHOW ANALYZE STATUS
SHOW [BACKUPS|RESTORES]
SHOW [GLOBAL|SESSION] BINDINGS
SHOW BUILTINS
SHOW CHARACTER SET
SHOW COLLATION
SHOW [FULL] COLUMNS FROM
SHOW CONFIG
SHOW CREATE PLACEMENT POLICY
SHOW CREATE SEQUENCE
SHOW CREATE TABLE
SHOW CREATE USER
SHOW DATABASES
SHOW DRAINER STATUS
SHOW ENGINES
SHOW ERRORS
SHOW [FULL] FIELDS FROM
SHOW GRANTS
SHOW INDEX [FROM|IN]
SHOW INDEXES [FROM|IN]
SHOW KEYS [FROM|IN]
SHOW MASTER STATUS
SHOW PLACEMENT
SHOW PLACEMENT FOR
SHOW PLACEMENT LABELS
SHOW PLUGINS
SHOW PRIVILEGES
SHOW [FULL] PROCESSSLIST
SHOW PROFILES
SHOW PUMP STATUS
SHOW SCHEMAS
SHOW STATS_HEALTHY
SHOW STATS_HISTOGRAMS
SHOW STATS_META
SHOW STATUS
SHOW TABLE NEXT_ROW_ID
SHOW TABLE REGIONS
SHOW TABLE STATUS
SHOW [FULL] TABLES
SHOW [GLOBAL|SESSION] VARIABLES
SHOW WARNINGS
SHUTDOWN
SPLIT REGION
START TRANSACTION
TABLE
TRACE
TRUNCATE
UPDATE
USE
WITH
- Data Types
- Functions and Operators
- Overview
- Type Conversion in Expression Evaluation
- Operators
- Control Flow Functions
- String Functions
- Numeric Functions and Operators
- Date and Time Functions
- Bit Functions and Operators
- Cast Functions and Operators
- Encryption and Compression Functions
- Locking Functions
- Information Functions
- JSON Functions
- Aggregate (GROUP BY) Functions
- Window Functions
- Miscellaneous Functions
- Precision Math
- Set Operations
- List of Expressions for Pushdown
- TiDB Specific Functions
- Clustered Indexes
- Constraints
- Generated Columns
- SQL Mode
- Table Attributes
- Transactions
- Garbage Collection (GC)
- Views
- Partitioning
- Temporary Tables
- Cached Tables
- Character Set and Collation
- Placement Rules in SQL
- System Tables
mysql
- INFORMATION_SCHEMA
- Overview
ANALYZE_STATUS
CLIENT_ERRORS_SUMMARY_BY_HOST
CLIENT_ERRORS_SUMMARY_BY_USER
CLIENT_ERRORS_SUMMARY_GLOBAL
CHARACTER_SETS
CLUSTER_CONFIG
CLUSTER_HARDWARE
CLUSTER_INFO
CLUSTER_LOAD
CLUSTER_LOG
CLUSTER_SYSTEMINFO
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
DATA_LOCK_WAITS
DDL_JOBS
DEADLOCKS
ENGINES
INSPECTION_RESULT
INSPECTION_RULES
INSPECTION_SUMMARY
KEY_COLUMN_USAGE
METRICS_SUMMARY
METRICS_TABLES
PARTITIONS
PLACEMENT_POLICIES
PROCESSLIST
REFERENTIAL_CONSTRAINTS
SCHEMATA
SEQUENCES
SESSION_VARIABLES
SLOW_QUERY
STATISTICS
TABLES
TABLE_CONSTRAINTS
TABLE_STORAGE_STATS
TIDB_HOT_REGIONS
TIDB_HOT_REGIONS_HISTORY
TIDB_INDEXES
TIDB_SERVERS_INFO
TIDB_TRX
TIFLASH_REPLICA
TIKV_REGION_PEERS
TIKV_REGION_STATUS
TIKV_STORE_STATUS
USER_PRIVILEGES
VARIABLES_INFO
VIEWS
METRICS_SCHEMA
- UI
- TiDB Dashboard
- Overview
- Maintain
- Access
- Overview Page
- Cluster Info Page
- Top SQL Page
- Key Visualizer Page
- Metrics Relation Graph
- SQL Statements Analysis
- Slow Queries Page
- Cluster Diagnostics
- Monitoring Page
- Search Logs Page
- Instance Profiling
- Session Management and Configuration
- FAQ
- CLI
- Command Line Flags
- Configuration File Parameters
- System Variables
- Storage Engines
- Telemetry
- Errors Codes
- Table Filter
- Schedule Replicas by Topology Labels
- FAQs
- Release Notes
- All Releases
- Release Timeline
- TiDB Versioning
- TiDB Installation Packages
- v6.2
- v6.1
- v6.0
- v5.4
- v5.3
- v5.2
- v5.1
- v5.0
- v4.0
- v3.1
- v3.0
- v2.1
- v2.0
- v1.0
- Glossary
Schedule Replicas by Topology Labels
TiDB v5.3.0 introduces an experimental support for Placement Rules in SQL. This offers a more convenient way to configure the placement of tables and partitions. Placement Rules in SQL might replace placement configuration with PD in future releases.
To improve the high availability and disaster recovery capability of TiDB clusters, it is recommended that TiKV nodes are physically scattered as much as possible. For example, TiKV nodes can be distributed on different racks or even in different data centers. According to the topology information of TiKV, the PD scheduler automatically performs scheduling at the background to isolate each replica of a Region as much as possible, which maximizes the capability of disaster recovery.
To make this mechanism effective, you need to properly configure TiKV and PD so that the topology information of the cluster, especially the TiKV location information, is reported to PD during deployment. Before you begin, see Deploy TiDB Using TiUP first.
Configure labels
based on the cluster topology
Configure labels
for TiKV
You can use the command-line flag or set the TiKV configuration file to bind some attributes in the form of key-value pairs. These attributes are called labels
. After TiKV is started, it reports its labels
to PD so users can identify the location of TiKV nodes.
Assume that the topology has three layers: zone > rack > host, and you can use these labels (zone, rack, host) to set the TiKV location in one of the following methods:
Use the command-line flag to start a TiKV instance:
tikv-server --labels zone=<zone>,rack=<rack>,host=<host>
Configure in the TiKV configuration file:
[server] labels = "zone=<zone>,rack=<rack>,host=<host>"
Configure location-labels
for PD
According to the description above, the label can be any key-value pair used to describe TiKV attributes. But PD cannot identify the location-related labels and the layer relationship of these labels. Therefore, you need to make the following configuration for PD to understand the TiKV node topology.
Defined as an array of strings, location-labels
is the configuration for PD. Each item of this configuration corresponds to the key of TiKV labels
. Besides, the sequence of each key represents the layer relationship of different labels (the isolation levels decrease from left to right).
You can customize the value of location-labels
, such as zone
, rack
, or host
, because the configuration does not have default values. Also, this configuration has no restriction in the number of label levels (not mandatory for 3 levels) as long as they match with TiKV server labels.
- To make configurations take effect, you must configure
location-labels
for PD andlabels
for TiKV at the same time. Otherwise, PD does not perform scheduling according to the topology. - If you use Placement Rules in SQL, you only need to configure
labels
for TiKV. Currently, Placement Rules in SQL is incompatible with thelocation-labels
configuration of PD and ignores this configuration. It is not recommended to uselocation-labels
and Placement Rules in SQL at the same time; otherwise, unexpected results might occur.
To configure location-labels
, choose one of the following methods according to your cluster situation:
If the PD cluster is not initialized, configure
location-labels
in the PD configuration file:[replication] location-labels = ["zone", "rack", "host"]
If the PD cluster is already initialized, use the pd-ctl tool to make online changes:
pd-ctl config set location-labels zone,rack,host
Configure isolation-level
for PD
If location-labels
has been configured, you can further enhance the topological isolation requirements on TiKV clusters by configuring isolation-level
in the PD configuration file.
Assume that you have made a three-layer cluster topology by configuring location-labels
according to the instructions above: zone -> rack -> host, you can configure the isolation-level
to zone
as follows:
[replication]
isolation-level = "zone"
If the PD cluster is already initialized, you need to use the pd-ctl tool to make online changes:
pd-ctl config set isolation-level zone
The location-level
configuration is an array of strings, which needs to correspond to a key of location-labels
. This parameter limits the minimum and mandatory isolation level requirements on TiKV topology clusters.
isolation-level
is empty by default, which means there is no mandatory restriction on the isolation level. To set it, you need to configure location-labels
for PD and ensure that the value of isolation-level
is one of location-labels
names.
Configure a cluster using TiUP (recommended)
When using TiUP to deploy a cluster, you can configure the TiKV location in the initialization configuration file. TiUP will generate the corresponding TiKV and PD configuration files during deployment.
In the following example, a two-layer topology of zone/host
is defined. The TiKV nodes of the cluster are distributed among three zones, each zone with two hosts. In z1, two TiKV instances are deployed per host. In z2 and z3, one TiKV instance is deployed per host. In the following example, tikv-n
represents the IP address of the n
th TiKV node.
server_configs:
pd:
replication.location-labels: ["zone", "host"]
tikv_servers:
# z1
- host: tikv-1
config:
server.labels:
zone: z1
host: h1
- host: tikv-2
config:
server.labels:
zone: z1
host: h1
- host: tikv-3
config:
server.labels:
zone: z1
host: h2
- host: tikv-4
config:
server.labels:
zone: z1
host: h2
# z2
- host: tikv-5
config:
server.labels:
zone: z2
host: h1
- host: tikv-6
config:
server.labels:
zone: z2
host: h2
# z3
- host: tikv-7
config:
server.labels:
zone: z3
host: h1
- host: tikv-8
config:
server.labels:
zone: z3
host: h2s
For details, see Geo-distributed Deployment topology.
If you have not configured replication.location-labels
in the configuration file, when you deploy a cluster using this topology file, an error might occur. It is recommended that you confirm replication.location-labels
is configured in the configuration file before deploying a cluster.
PD schedules based on topology label
PD schedules replicas according to the label layer to make sure that different replicas of the same data are scattered as much as possible.
Take the topology in the previous section as an example.
Assume that the number of cluster replicas is 3 (max-replicas=3
). Because there are 3 zones in total, PD ensures that the 3 replicas of each Region are respectively placed in z1, z2, and z3. In this way, the TiDB cluster is still available when one data center fails.
Then, assume that the number of cluster replicas is 5 (max-replicas=5
). Because there are only 3 zones in total, PD cannot guarantee the isolation of each replica at the zone level. In this situation, the PD scheduler will ensure replica isolation at the host level. In other words, multiple replicas of a Region might be distributed in the same zone but not on the same host.
In the case of the 5-replica configuration, if z3 fails or is isolated as a whole, and cannot be recovered after a period of time (controlled by max-store-down-time
), PD will make up the 5 replicas through scheduling. At this time, only 4 hosts are available. This means that host-level isolation cannot be guaranteed and that multiple replicas might be scheduled to the same host. But if the isolation-level
value is set to zone
instead of being left empty, this specifies the minimum physical isolation requirements for Region replicas. That is to say, PD will ensure that replicas of the same Region are scattered among different zones. PD will not perform corresponding scheduling even if following this isolation restriction does not meet the requirement of max-replicas
for multiple replicas.
For example, a TiKV cluster is distributed across three data zones z1, z2, and z3. Each Region has three replicas as required, and PD distributes the three replicas of the same Region to these three data zones respectively. If a power outage occurs in z1 and cannot be recovered after a period of time (controlled by max-store-down-time
and 30 minutes by default), PD determines that the Region replicas on z1 are no longer available. However, because isolation-level
is set to zone
, PD needs to strictly guarantee that different replicas of the same Region will not be scheduled on the same data zone. Because both z2 and z3 already have replicas, PD will not perform any scheduling under the minimum isolation level restriction of isolation-level
, even if there are only two replicas at this moment.
Similarly, when isolation-level
is set to rack
, the minimum isolation level applies to different racks in the same data center. With this configuration, the isolation at the zone layer is guaranteed first if possible. When the isolation at the zone level cannot be guaranteed, PD tries to avoid scheduling different replicas to the same rack in the same zone. The scheduling works similarly when isolation-level
is set to host
where PD first guarantees the isolation level of rack, and then the level of host.
In summary, PD maximizes the disaster recovery of the cluster according to the current topology. Therefore, if you want to achieve a certain level of disaster recovery, deploy more machines on different sites according to the topology than the number of max-replicas
. TiDB also provides mandatory configuration items such as isolation-level
for you to more flexibly control the topological isolation level of data according to different scenarios.