- Docs Home
- About TiDB
- Quick Start
- Develop
- Overview
- Quick Start
- Build a TiDB Cluster in TiDB Cloud (Developer Tier)
- CRUD SQL in TiDB
- Build a Simple CRUD App with TiDB
- Example Applications
- Connect to TiDB
- Design Database Schema
- Write Data
- Read Data
- Transaction
- Optimize
- Troubleshoot
- Reference
- Cloud Native Development Environment
- Third-party Support
- Deploy
- Software and Hardware Requirements
- Environment Configuration Checklist
- Plan Cluster Topology
- Install and Start
- Verify Cluster Status
- Test Cluster Performance
- Migrate
- Overview
- Migration Tools
- Migration Scenarios
- Migrate from Aurora
- Migrate MySQL of Small Datasets
- Migrate MySQL of Large Datasets
- Migrate and Merge MySQL Shards of Small Datasets
- Migrate and Merge MySQL Shards of Large Datasets
- Migrate from CSV Files
- Migrate from SQL Files
- Migrate from One TiDB Cluster to Another TiDB Cluster
- Migrate from TiDB to MySQL-compatible Databases
- Advanced Migration
- Integrate
- Overview
- Integration Scenarios
- Maintain
- Monitor and Alert
- Troubleshoot
- TiDB Troubleshooting Map
- Identify Slow Queries
- Analyze Slow Queries
- SQL Diagnostics
- Identify Expensive Queries Using Top SQL
- Identify Expensive Queries Using Logs
- Statement Summary Tables
- Troubleshoot Hotspot Issues
- Troubleshoot Increased Read and Write Latency
- Save and Restore the On-Site Information of a Cluster
- Troubleshoot Cluster Setup
- Troubleshoot High Disk I/O Usage
- Troubleshoot Lock Conflicts
- Troubleshoot TiFlash
- Troubleshoot Write Conflicts in Optimistic Transactions
- Troubleshoot Inconsistency Between Data and Indexes
- Performance Tuning
- Tuning Guide
- Configuration Tuning
- System Tuning
- Software Tuning
- SQL Tuning
- Overview
- Understanding the Query Execution Plan
- SQL Optimization Process
- Overview
- Logic Optimization
- Physical Optimization
- Prepare Execution Plan Cache
- Control Execution Plans
- Tutorials
- TiDB Tools
- Overview
- Use Cases
- Download
- TiUP
- Documentation Map
- Overview
- Terminology and Concepts
- Manage TiUP Components
- FAQ
- Troubleshooting Guide
- Command Reference
- Overview
- TiUP Commands
- TiUP Cluster Commands
- Overview
- tiup cluster audit
- tiup cluster check
- tiup cluster clean
- tiup cluster deploy
- tiup cluster destroy
- tiup cluster disable
- tiup cluster display
- tiup cluster edit-config
- tiup cluster enable
- tiup cluster help
- tiup cluster import
- tiup cluster list
- tiup cluster patch
- tiup cluster prune
- tiup cluster reload
- tiup cluster rename
- tiup cluster replay
- tiup cluster restart
- tiup cluster scale-in
- tiup cluster scale-out
- tiup cluster start
- tiup cluster stop
- tiup cluster template
- tiup cluster upgrade
- TiUP DM Commands
- Overview
- tiup dm audit
- tiup dm deploy
- tiup dm destroy
- tiup dm disable
- tiup dm display
- tiup dm edit-config
- tiup dm enable
- tiup dm help
- tiup dm import
- tiup dm list
- tiup dm patch
- tiup dm prune
- tiup dm reload
- tiup dm replay
- tiup dm restart
- tiup dm scale-in
- tiup dm scale-out
- tiup dm start
- tiup dm stop
- tiup dm template
- tiup dm upgrade
- TiDB Cluster Topology Reference
- DM Cluster Topology Reference
- Mirror Reference Guide
- TiUP Components
- PingCAP Clinic Diagnostic Service
- TiDB Operator
- Dumpling
- TiDB Lightning
- TiDB Data Migration
- About TiDB Data Migration
- Architecture
- Quick Start
- Deploy a DM cluster
- Tutorials
- Advanced Tutorials
- Maintain
- Cluster Upgrade
- Tools
- Performance Tuning
- Manage Data Sources
- Manage Tasks
- Export and Import Data Sources and Task Configurations of Clusters
- Handle Alerts
- Daily Check
- Reference
- Architecture
- Command Line
- Configuration Files
- OpenAPI
- Compatibility Catalog
- Secure
- Monitoring and Alerts
- Error Codes
- Glossary
- Example
- Troubleshoot
- Release Notes
- Backup & Restore (BR)
- Point-in-Time Recovery
- TiDB Binlog
- TiCDC
- Dumpling
- sync-diff-inspector
- TiSpark
- Reference
- Cluster Architecture
- Key Monitoring Metrics
- Secure
- Privileges
- SQL
- SQL Language Structure and Syntax
- SQL Statements
ADD COLUMN
ADD INDEX
ADMIN
ADMIN CANCEL DDL
ADMIN CHECKSUM TABLE
ADMIN CHECK [TABLE|INDEX]
ADMIN SHOW DDL [JOBS|QUERIES]
ADMIN SHOW TELEMETRY
ALTER DATABASE
ALTER INDEX
ALTER INSTANCE
ALTER PLACEMENT POLICY
ALTER TABLE
ALTER TABLE COMPACT
ALTER TABLE SET TIFLASH MODE
ALTER USER
ANALYZE TABLE
BACKUP
BATCH
BEGIN
CHANGE COLUMN
COMMIT
CHANGE DRAINER
CHANGE PUMP
CREATE [GLOBAL|SESSION] BINDING
CREATE DATABASE
CREATE INDEX
CREATE PLACEMENT POLICY
CREATE ROLE
CREATE SEQUENCE
CREATE TABLE LIKE
CREATE TABLE
CREATE USER
CREATE VIEW
DEALLOCATE
DELETE
DESC
DESCRIBE
DO
DROP [GLOBAL|SESSION] BINDING
DROP COLUMN
DROP DATABASE
DROP INDEX
DROP PLACEMENT POLICY
DROP ROLE
DROP SEQUENCE
DROP STATS
DROP TABLE
DROP USER
DROP VIEW
EXECUTE
EXPLAIN ANALYZE
EXPLAIN
FLASHBACK TABLE
FLUSH PRIVILEGES
FLUSH STATUS
FLUSH TABLES
GRANT <privileges>
GRANT <role>
INSERT
KILL [TIDB]
LOAD DATA
LOAD STATS
MODIFY COLUMN
PREPARE
RECOVER TABLE
RENAME INDEX
RENAME TABLE
REPLACE
RESTORE
REVOKE <privileges>
REVOKE <role>
ROLLBACK
SAVEPOINT
SELECT
SET DEFAULT ROLE
SET [NAMES|CHARACTER SET]
SET PASSWORD
SET ROLE
SET TRANSACTION
SET [GLOBAL|SESSION] <variable>
SHOW ANALYZE STATUS
SHOW [BACKUPS|RESTORES]
SHOW [GLOBAL|SESSION] BINDINGS
SHOW BUILTINS
SHOW CHARACTER SET
SHOW COLLATION
SHOW [FULL] COLUMNS FROM
SHOW CONFIG
SHOW CREATE PLACEMENT POLICY
SHOW CREATE SEQUENCE
SHOW CREATE TABLE
SHOW CREATE USER
SHOW DATABASES
SHOW DRAINER STATUS
SHOW ENGINES
SHOW ERRORS
SHOW [FULL] FIELDS FROM
SHOW GRANTS
SHOW INDEX [FROM|IN]
SHOW INDEXES [FROM|IN]
SHOW KEYS [FROM|IN]
SHOW MASTER STATUS
SHOW PLACEMENT
SHOW PLACEMENT FOR
SHOW PLACEMENT LABELS
SHOW PLUGINS
SHOW PRIVILEGES
SHOW [FULL] PROCESSSLIST
SHOW PROFILES
SHOW PUMP STATUS
SHOW SCHEMAS
SHOW STATS_HEALTHY
SHOW STATS_HISTOGRAMS
SHOW STATS_META
SHOW STATUS
SHOW TABLE NEXT_ROW_ID
SHOW TABLE REGIONS
SHOW TABLE STATUS
SHOW [FULL] TABLES
SHOW [GLOBAL|SESSION] VARIABLES
SHOW WARNINGS
SHUTDOWN
SPLIT REGION
START TRANSACTION
TABLE
TRACE
TRUNCATE
UPDATE
USE
WITH
- Data Types
- Functions and Operators
- Overview
- Type Conversion in Expression Evaluation
- Operators
- Control Flow Functions
- String Functions
- Numeric Functions and Operators
- Date and Time Functions
- Bit Functions and Operators
- Cast Functions and Operators
- Encryption and Compression Functions
- Locking Functions
- Information Functions
- JSON Functions
- Aggregate (GROUP BY) Functions
- Window Functions
- Miscellaneous Functions
- Precision Math
- Set Operations
- List of Expressions for Pushdown
- TiDB Specific Functions
- Clustered Indexes
- Constraints
- Generated Columns
- SQL Mode
- Table Attributes
- Transactions
- Garbage Collection (GC)
- Views
- Partitioning
- Temporary Tables
- Cached Tables
- Character Set and Collation
- Placement Rules in SQL
- System Tables
mysql
- INFORMATION_SCHEMA
- Overview
ANALYZE_STATUS
CLIENT_ERRORS_SUMMARY_BY_HOST
CLIENT_ERRORS_SUMMARY_BY_USER
CLIENT_ERRORS_SUMMARY_GLOBAL
CHARACTER_SETS
CLUSTER_CONFIG
CLUSTER_HARDWARE
CLUSTER_INFO
CLUSTER_LOAD
CLUSTER_LOG
CLUSTER_SYSTEMINFO
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
DATA_LOCK_WAITS
DDL_JOBS
DEADLOCKS
ENGINES
INSPECTION_RESULT
INSPECTION_RULES
INSPECTION_SUMMARY
KEY_COLUMN_USAGE
METRICS_SUMMARY
METRICS_TABLES
PARTITIONS
PLACEMENT_POLICIES
PROCESSLIST
REFERENTIAL_CONSTRAINTS
SCHEMATA
SEQUENCES
SESSION_VARIABLES
SLOW_QUERY
STATISTICS
TABLES
TABLE_CONSTRAINTS
TABLE_STORAGE_STATS
TIDB_HOT_REGIONS
TIDB_HOT_REGIONS_HISTORY
TIDB_INDEXES
TIDB_SERVERS_INFO
TIDB_TRX
TIFLASH_REPLICA
TIKV_REGION_PEERS
TIKV_REGION_STATUS
TIKV_STORE_STATUS
USER_PRIVILEGES
VARIABLES_INFO
VIEWS
METRICS_SCHEMA
- UI
- TiDB Dashboard
- Overview
- Maintain
- Access
- Overview Page
- Cluster Info Page
- Top SQL Page
- Key Visualizer Page
- Metrics Relation Graph
- SQL Statements Analysis
- Slow Queries Page
- Cluster Diagnostics
- Monitoring Page
- Search Logs Page
- Instance Profiling
- Session Management and Configuration
- FAQ
- CLI
- Command Line Flags
- Configuration File Parameters
- System Variables
- Storage Engines
- Telemetry
- Errors Codes
- Table Filter
- Schedule Replicas by Topology Labels
- FAQs
- Release Notes
- All Releases
- Release Timeline
- TiDB Versioning
- TiDB Installation Packages
- v6.2
- v6.1
- v6.0
- v5.4
- v5.3
- v5.2
- v5.1
- v5.0
- v4.0
- v3.1
- v3.0
- v2.1
- v2.0
- v1.0
- Glossary
SQL Plan Management (SPM)
SQL Plan Management is a set of functions that execute SQL bindings to manually interfere with SQL execution plans. These functions include SQL binding, baseline capturing, and baseline evolution.
SQL binding
An SQL binding is the basis of SPM. The Optimizer Hints document introduces how to select a specific execution plan using hints. However, sometimes you need to interfere with execution selection without modifying SQL statements. With SQL bindings, you can select a specified execution plan without modifying SQL statements.
Create a binding
CREATE [GLOBAL | SESSION] BINDING FOR BindableStmt USING BindableStmt
This statement binds SQL execution plans at the GLOBAL or SESSION level. Currently, supported bindable SQL statements (BindableStmt) in TiDB include SELECT
, DELETE
, UPDATE
, and INSERT
/ REPLACE
with SELECT
subqueries.
Bindings have higher priority over manually added hints. Therefore, when you execute a statement containing a hint while a corresponding binding is present, the hint controlling the behavior of the optimizer does not take effect. However, other types of hints are still effective.
Specifically, two types of these statements cannot be bound to execution plans due to syntax conflicts. See the following examples:
-- Type one: Statements that get the Cartesian product by using the `JOIN` keyword and not specifying the associated columns with the `USING` keyword.
CREATE GLOBAL BINDING for
SELECT * FROM t t1 JOIN t t2
USING
SELECT * FROM t t1 JOIN t t2;
-- Type two: `DELETE` statements that contain the `USING` keyword.
CREATE GLOBAL BINDING for
DELETE FROM t1 USING t1 JOIN t2 ON t1.a = t2.a
USING
DELETE FROM t1 USING t1 JOIN t2 ON t1.a = t2.a;
You can bypass syntax conflicts by using equivalent statements. For example, you can rewrite the above statements in the following ways:
-- First rewrite of type one statements: Add a `USING` clause for the `JOIN` keyword.
CREATE GLOBAL BINDING for
SELECT * FROM t t1 JOIN t t2 USING (a)
USING
SELECT * FROM t t1 JOIN t t2 USING (a);
-- Second rewrite of type one statements: Delete the `JOIN` keyword.
CREATE GLOBAL BINDING for
SELECT * FROM t t1, t t2
USING
SELECT * FROM t t1, t t2;
-- Rewrite of type two statements: Remove the `USING` keyword from the `delete` statement.
CREATE GLOBAL BINDING for
DELETE t1 FROM t1 JOIN t2 ON t1.a = t2.a
using
DELETE t1 FROM t1 JOIN t2 ON t1.a = t2.a;
When creating execution plan bindings for INSERT
/ REPLACE
statements with SELECT
subqueries, you need to specify the optimizer hints you want to bind in the SELECT
subquery, not after the INSERT
/ REPLACE
keyword. Otherwise, the optimizer hints do not take effect as intended.
Here are two examples:
-- The hint takes effect in the following statement.
CREATE GLOBAL BINDING for
INSERT INTO t1 SELECT * FROM t2 WHERE a > 1 AND b = 1
using
INSERT INTO t1 SELECT /*+ use_index(@sel_1 t2, a) */ * FROM t2 WHERE a > 1 AND b = 1;
-- The hint cannot take effect in the following statement.
CREATE GLOBAL BINDING for
INSERT INTO t1 SELECT * FROM t2 WHERE a > 1 AND b = 1
using
INSERT /*+ use_index(@sel_1 t2, a) */ INTO t1 SELECT * FROM t2 WHERE a > 1 AND b = 1;
If you do not specify the scope when creating an execution plan binding, the default scope is SESSION. The TiDB optimizer normalizes bound SQL statements and stores them in the system table. When processing SQL queries, if a normalized statement matches one of the bound SQL statements in the system table and the system variable tidb_use_plan_baselines
is set to on
(the default value is on
), TiDB then uses the corresponding optimizer hint for this statement. If there are multiple matchable execution plans, the optimizer chooses the least costly one to bind.
Normalization
is a process that converts a constant in an SQL statement to a variable parameter and explicitly specifies the database for tables referenced in the query, with standardized processing on the spaces and line breaks in the SQL statement. See the following example:
SELECT * FROM t WHERE a > 1
-- After normalization, the above statement is as follows:
SELECT * FROM test . t WHERE a > ?
Multiple constants joined by commas ,
are normalized as ...
instead of ?
.
For example:
SELECT * FROM t limit 10
SELECT * FROM t limit 10, 20
SELECT * FROM t WHERE a IN (1)
SELECT * FROM t WHERE a IN (1,2,3)
-- After normalization, the above statements are as follows:
SELECT * FROM test . t limit ?
SELECT * FROM test . t limit ...
SELECT * FROM test . t WHERE a IN ( ? )
SELECT * FROM test . t WHERE a IN ( ... )
When bindings are created, TiDB treats SQL statements that contain a single constant and SQL statements that contain multiple constants joined by commas differently. Therefore, you need to create bindings for the two SQL types separately.
When a SQL statement has bound execution plans in both GLOBAL and SESSION scopes, because the optimizer ignores the bound execution plan in the GLOBAL scope when it encounters the SESSION binding, the bound execution plan of this statement in the SESSION scope shields the execution plan in the GLOBAL scope.
For example:
-- Creates a GLOBAL binding and specifies using `sort merge join` in this binding.
CREATE GLOBAL BINDING for
SELECT * FROM t1, t2 WHERE t1.id = t2.id
USING
SELECT /*+ merge_join(t1, t2) */ * FROM t1, t2 WHERE t1.id = t2.id;
-- The execution plan of this SQL statement uses the `sort merge join` specified in the GLOBAL binding.
explain SELECT * FROM t1, t2 WHERE t1.id = t2.id;
-- Creates another SESSION binding and specifies using `hash join` in this binding.
CREATE BINDING for
SELECT * FROM t1, t2 WHERE t1.id = t2.id
USING
SELECT /*+ hash_join(t1, t2) */ * FROM t1, t2 WHERE t1.id = t2.id;
-- In the execution plan of this statement, `hash join` specified in the SESSION binding is used, instead of `sort merge join` specified in the GLOBAL binding.
explain SELECT * FROM t1, t2 WHERE t1.id = t2.id;
When the first SELECT
statement is being executed, the optimizer adds the sm_join(t1, t2)
hint to the statement through the binding in the GLOBAL scope. The top node of the execution plan in the explain
result is MergeJoin. When the second SELECT
statement is being executed, the optimizer uses the binding in the SESSION scope instead of the binding in the GLOBAL scope and adds the hash_join(t1, t2)
hint to the statement. The top node of the execution plan in the explain
result is HashJoin.
Each standardized SQL statement can have only one binding created using CREATE BINDING
at a time. When multiple bindings are created for the same standardized SQL statement, the last created binding is retained, and all previous bindings (created and evolved) are marked as deleted. But session bindings and global bindings can coexist and are not affected by this logic.
In addition, when you create a binding, TiDB requires that the session is in a database context, which means that a database is specified when the client is connected or use ${database}
is executed.
The original SQL statement and the bound statement must have the same text after normalization and hint removal, or the binding will fail. Take the following examples:
This binding can be created successfully because the texts before and after parameterization and hint removal are the same:
SELECT * FROM test . t WHERE a > ?
CREATE BINDING FOR SELECT * FROM t WHERE a > 1 USING SELECT * FROM t use index (idx) WHERE a > 2
This binding will fail because the original SQL statement is processed as
SELECT * FROM test . t WHERE a > ?
, while the bound SQL statement is processed differently asSELECT * FROM test . t WHERE b > ?
.CREATE BINDING FOR SELECT * FROM t WHERE a > 1 USING SELECT * FROM t use index(idx) WHERE b > 2
For PREPARE
/ EXECUTE
statements and for queries executed with binary protocols, you need to create execution plan bindings for the real query statements, not for the PREPARE
/ EXECUTE
statements.
Remove binding
DROP [GLOBAL | SESSION] BINDING FOR BindableStmt;
This statement removes a specified execution plan binding at the GLOBAL or SESSION level. The default scope is SESSION.
Generally, the binding in the SESSION scope is mainly used for test or in special situations. For a binding to take effect in all TiDB processes, you need to use the GLOBAL binding. A created SESSION binding shields the corresponding GLOBAL binding until the end of the SESSION, even if the SESSION binding is dropped before the session closes. In this case, no binding takes effect and the plan is selected by the optimizer.
The following example is based on the example in create binding in which the SESSION binding shields the GLOBAL binding:
-- Drops the binding created in the SESSION scope.
drop session binding for SELECT * FROM t1, t2 WHERE t1.id = t2.id;
-- Views the SQL execution plan again.
explain SELECT * FROM t1,t2 WHERE t1.id = t2.id;
In the example above, the dropped binding in the SESSION scope shields the corresponding binding in the GLOBAL scope. The optimizer does not add the sm_join(t1, t2)
hint to the statement. The top node of the execution plan in the explain
result is not fixed to MergeJoin by this hint. Instead, the top node is independently selected by the optimizer according to the cost estimation.
Executing DROP GLOBAL BINDING
drops the binding in the current tidb-server instance cache and changes the status of the corresponding row in the system table to 'deleted'. This statement does not directly delete the records in the system table, because other tidb-server instances need to read the 'deleted' status to drop the corresponding binding in their cache. For the records in these system tables with the status of 'deleted', at every 100 bind-info-lease
(the default value is 3s
, and 300s
in total) interval, the background thread triggers an operation of reclaiming and clearing on the bindings of update_time
before 10 bind-info-lease
(to ensure that all tidb-server instances have read the 'deleted' status and updated the cache).
Change binding status
SET BINDING [ENABLED | DISABLED] FOR BindableStmt;
You can execute this statement to change the status of a binding. The default status is ENABLED. The effective scope is GLOBAL by default and cannot be modified.
When executing this statement, you can only change the status of a binding from Disabled
to Enabled
or from Enabled
to Disabled
. If no binding is available for status changes, a warning message is returned, saying There are no bindings can be set the status. Please check the SQL text
. Note that a binding in Disabled
status is not used by any query.
View bindings
SHOW [GLOBAL | SESSION] BINDINGS [ShowLikeOrWhere]
This statement outputs the execution plan bindings at the GLOBAL or SESSION level according to the order of binding update time from the latest to earliest. The default scope is SESSION. Currently SHOW BINDINGS
outputs eight columns, as shown below:
Column Name | Note |
---|---|
original_sql | Original SQL statement after parameterization |
bind_sql | Bound SQL statement with hints |
default_db | Default database |
status | Status including Enabled (replacing the Using status from v6.0), Disabled, Deleted, Invalid, Rejected, and Pending verification |
create_time | Creating time |
update_time | Updating time |
charset | Character set |
collation | Ordering rule |
source | The way in which a binding is created, including manual (created by the create [global] binding SQL statement), capture (captured automatically by TiDB), and evolve (evolved automatically by TiDB) |
Troubleshoot a binding
You can use either of the following methods to troubleshoot a binding:
Use the system variable
last_plan_from_binding
to show whether the execution plan used by the last executed statement is from the binding.-- Create a global binding CREATE GLOBAL BINDING for SELECT * FROM t USING SELECT /*+ USE_INDEX(t, idx_a) */ * FROM t; SELECT * FROM t; SELECT @@[SESSION.]last_plan_from_binding;
+--------------------------+ | @@last_plan_from_binding | +--------------------------+ | 1 | +--------------------------+ 1 row in set (0.00 sec)
Use the
explain format = 'verbose'
statement to view the query plan of a SQL statement. If the SQL statement uses a binding, you can runshow warnings
to check which binding is used in the SQL statement.-- Create a global binding CREATE GLOBAL BINDING for SELECT * FROM t USING SELECT /*+ USE_INDEX(t, idx_a) */ * FROM t; -- Use explain format = 'verbose' to view the execution plan of a SQL statement explain format = 'verbose' SELECT * FROM t; -- Run `show warnings` to view the binding used in the query. show warnings;
+-------+------+--------------------------------------------------------------------------+ | Level | Code | Message | +-------+------+--------------------------------------------------------------------------+ | Note | 1105 | Using the bindSQL: SELECT /*+ USE_INDEX(`t` `idx_a`)*/ * FROM `test`.`t` | +-------+------+--------------------------------------------------------------------------+ 1 row in set (0.01 sec)
Cache bindings
Each TiDB instance has a least recently used (LRU) cache for bindings. The cache capacity is controlled by the system variable tidb_mem_quota_binding_cache
. You can view bindings that are cached in the TiDB instance.
To view the cache status of bindings, run the SHOW binding_cache status
statement. In this statement, the effective scope is GLOBAL by default and cannot be modified. This statement returns the number of available bindings in the cache, the total number of available bindings in the system, memory usage of all cached bindings, and the total memory for the cache.
SHOW binding_cache status;
+-------------------+-------------------+--------------+--------------+
| bindings_in_cache | bindings_in_table | memory_usage | memory_quota |
+-------------------+-------------------+--------------+--------------+
| 1 | 1 | 159 Bytes | 64 MB |
+-------------------+-------------------+--------------+--------------+
1 row in set (0.00 sec)
Baseline capturing
Used for preventing regression of execution plans during an upgrade, this feature captures queries that meet capturing conditions and creates bindings for these queries.
Enable capturing
To enable baseline capturing, set tidb_capture_plan_baselines
to on
. The default value is off
.
Because the automatic binding creation function relies on Statement Summary, make sure to enable Statement Summary before using automatic binding.
After automatic binding creation is enabled, the historical SQL statements in the Statement Summary are traversed every bind-info-lease
(the default value is 3s
), and a binding is automatically created for SQL statements that appear at least twice. For these SQL statements, TiDB automatically binds the execution plan recorded in Statement Summary.
However, TiDB does not automatically capture bindings for the following types of SQL statements:
EXPLAIN
andEXPLAIN ANALYZE
statements.- SQL statements executed internally in TiDB, such as
SELECT
queries used for automatically loading statistical information. - Statements that contain
Enabled
orDisabled
bindings. - Statements that are filtered out by capturing conditions.
Currently, a binding generates a group of hints to fix an execution plan generated by a query statement. In this way, for the same query, the execution plan does not change. For most OLTP queries, including queries using the same index or Join algorithm (such as HashJoin and IndexJoin), TiDB guarantees plan consistency before and after the binding. However, due to the limitations of hints, TiDB cannot guarantee plan consistency for some complex queries, such as Join of more than two tables, MPP queries, and complex OLAP queries.
For PREPARE
/ EXECUTE
statements and for queries executed with binary protocols, TiDB automatically captures bindings for the real query statements, not for the PREPARE
/ EXECUTE
statements.
Because TiDB has some embedded SQL statements to ensure the correctness of some features, baseline capturing by default automatically shields these SQL statements.
Filter out bindings
This feature allows you to configure a blocklist to filter out queries whose bindings you do not want to capture. A blocklist has three dimensions, table name, frequency, and user name.
Usage
Insert filtering conditions into the system table mysql.capture_plan_baselines_blacklist
. Then the filtering conditions take effect in the entire cluster immediately.
-- Filter by table name
INSERT INTO mysql.capture_plan_baselines_blacklist(filter_type, filter_value) VALUES('table', 'test.t');
-- Filter by database name and table name through wildcards
INSERT INTO mysql.capture_plan_baselines_blacklist(filter_type, filter_value) VALUES('table', 'test.table_*');
INSERT INTO mysql.capture_plan_baselines_blacklist(filter_type, filter_value) VALUES('table', 'db_*.table_*');
-- Filter by frequency
INSERT INTO mysql.capture_plan_baselines_blacklist(filter_type, filter_value) VALUES('frequency', '2');
-- Filter by user name
INSERT INTO mysql.capture_plan_baselines_blacklist(filter_type, filter_value) VALUES('user', 'user1');
Dimension name | Description | Remarks |
---|---|---|
table | Filter by table name. Each filtering rule is in the db.table format. The supported filtering syntax includes Plain table names and Wildcards. | Case insensitive. If a table name contains illegal characters, the log returns a warning message [sql-bind] failed to load mysql.capture_plan_baselines_blacklist . |
frequency | Filter by frequency. SQL statements executed more than once are captured by default. You can set a high frequency to capture statements that are frequently executed. | Setting frequency to a value smaller than 1 is considered illegal, and the log returns a warning message [sql-bind] frequency threshold is less than 1, ignore it . If multiple frequency filter rules are inserted, the value with the highest frequency prevails. |
user | Filter by user name. Statements executed by blocklisted users are not captured. | If multiple users execute the same statement and their user names are all in the blocklist, this statement is not captured. |
Modifying a blocklist requires the super privilege.
If a blocklist contains illegal filters, TiDB returns the warning message
[sql-bind] unknown capture filter type, ignore it
in the log.
Prevent regression of execution plans during an upgrade
Before upgrading a TiDB cluster, you can use baseline capturing to prevent regression of execution plans by performing the following steps:
Enable baseline capturing and keep it working.
NoteTest data shows that long-term working of baseline capturing has a slight impact on the performance of the cluster load. Therefore, it is recommended to enable baseline capturing as long as possible so that important plans (appear twice or above) are captured.
Upgrade the TiDB cluster. After the upgrade, TiDB uses those captured bindings to ensure execution plan consistency.
After the upgrade, delete bindings as required.
Check the binding source by running the
SHOW GLOBAL BINDINGS
statement.In the output, check the
Source
field to see whether a binding is captured (capture
) or manually created (manual
).Determine whether to retain the captured bindings:
-- View the plan with the binding enabled SET @@SESSION.TIDB_USE_PLAN_BASELINES = true; EXPLAIN FORMAT='VERBOSE' SELECT * FROM t1 WHERE ...; -- View the plan with the binding disabled SET @@SESSION.TIDB_USE_PLAN_BASELINES = false; EXPLAIN FORMAT='VERBOSE' SELECT * FROM t1 WHERE ...;
If the execution plan is consistent, you can delete the binding safely.
If the execution plan is inconsistent, you need to identify the cause, for example, by checking statistics. In this case, you need to retain the binding to ensure plan consistency.
Baseline evolution
Baseline evolution is an important feature of SPM introduced in TiDB v4.0.
As data updates, the previously bound execution plan might no longer be optimal. The baseline evolution feature can automatically optimize the bound execution plan.
In addition, baseline evolution, to a certain extent, can also avoid the jitter brought to the execution plan caused by the change of statistical information.
Usage
Use the following statement to enable automatic binding evolution:
SET GLOBAL tidb_evolve_plan_baselines = ON;
The default value of tidb_evolve_plan_baselines
is off
.
- Baseline evolution is an experimental feature. Unknown risks might exist. It is NOT recommended that you use it in the production environment.
- This variable is forcibly set to
off
until the baseline evolution feature becomes generally available (GA). If you try to enable this feature, an error is returned. If you have already used this feature in a production environment, disable it as soon as possible. If you find that the binding status is not as expected, contact PingCAP's technical support for help.
After the automatic binding evolution feature is enabled, if the optimal execution plan selected by the optimizer is not among the binding execution plans, the optimizer marks the plan as an execution plan that waits for verification. At every bind-info-lease
(the default value is 3s
) interval, an execution plan to be verified is selected and compared with the binding execution plan that has the least cost in terms of the actual execution time. If the plan to be verified has shorter execution time (the current criterion for the comparison is that the execution time of the plan to be verified is no longer than 2/3 that of the binding execution plan), this plan is marked as a usable binding. The following example describes the process above.
Assume that table t
is defined as follows:
CREATE TABLE t(a INT, b INT, KEY(a), KEY(b));
Perform the following query on table t
:
SELECT * FROM t WHERE a < 100 AND b < 100;
In the table defined above, few rows meet the a < 100
condition. But for some reason, the optimizer mistakenly selects the full table scan instead of the optimal execution plan that uses index a
. You can first use the following statement to create a binding:
CREATE GLOBAL BINDING for SELECT * FROM t WHERE a < 100 AND b < 100 using SELECT * FROM t use index(a) WHERE a < 100 AND b < 100;
When the query above is executed again, the optimizer selects index a
(influenced by the binding created above) to reduce the query time.
Assuming that as insertions and deletions are performed on table t
, an increasing number of rows meet the a < 100
condition and a decreasing number of rows meet the b < 100
condition. At this time, using index a
under the binding might no longer be the optimal plan.
The binding evolution can address this kind of issues. When the optimizer recognizes data change in a table, it generates an execution plan for the query that uses index b
. However, because the binding of the current plan exists, this query plan is not adopted and executed. Instead, this plan is stored in the backend evolution list. During the evolution process, if this plan is verified to have an obviously shorter execution time than that of the current execution plan that uses index a
, index b
is added into the available binding list. After this, when the query is executed again, the optimizer first generates the execution plan that uses index b
and makes sure that this plan is in the binding list. Then the optimizer adopts and executes this plan to reduce the query time after data changes.
To reduce the impact that the automatic evolution has on clusters, use the following configurations:
- Set
tidb_evolve_plan_task_max_time
to limit the maximum execution time of each execution plan. The default value is600s
. In the actual verification process, the maximum execution time is also limited to no more than twice the time of the verified execution plan. - Set
tidb_evolve_plan_task_start_time
(00:00 +0000
by default) andtidb_evolve_plan_task_end_time
(23:59 +0000
by default) to limit the time window.
Notes
Because the baseline evolution automatically creates a new binding, when the query environment changes, the automatically created binding might have multiple behavior choices. Pay attention to the following notes:
Baseline evolution only evolves standardized SQL statements that have at least one global binding.
Because creating a new binding deletes all previous bindings (for a standardized SQL statement), the automatically evolved binding will be deleted after manually creating a new binding.
All hints related to the calculation process are retained during the evolution. These hints are as follows:
Hint Description memory_quota
The maximum memory that can be used for a query. use_toja
Whether the optimizer transforms sub-queries to Join. use_cascades
Whether to use the cascades optimizer. no_index_merge
Whether the optimizer uses Index Merge as an option for reading tables. read_consistent_replica
Whether to forcibly enable Follower Read when reading tables. max_execution_time
The longest duration for a query. read_from_storage
is a special hint in that it specifies whether to read data from TiKV or from TiFlash when reading tables. Because TiDB provides isolation reads, when the isolation condition changes, this hint has a great influence on the evolved execution plan. Therefore, when this hint exists in the initially created binding, TiDB ignores all its evolved bindings.
Upgrade checklist
During cluster upgrade, SQL Plan Management (SPM) might cause compatibility issues and make the upgrade fail. To ensure a successful upgrade, you need to include the following list for upgrade precheck:
When you upgrade from a version earlier than v5.2.0 (that is, v4.0, v5.0, and v5.1) to the current version, make sure that
tidb_evolve_plan_baselines
is disabled before the upgrade. To disable this variable, perform the following steps.-- Check whether `tidb_evolve_plan_baselines` is disabled in the earlier version. SELECT @@global.tidb_evolve_plan_baselines; -- If `tidb_evolve_plan_baselines` is still enabled, disable it. SET GLOBAL tidb_evolve_plan_baselines = OFF;
Before you upgrade from v4.0 to the current version, you need to check whether the syntax of all queries corresponding to the available SQL bindings is correct in the new version. If any syntax errors exist, delete the corresponding SQL binding. To do that, perform the following steps.
-- Check the query corresponding to the available SQL binding in the version to be upgraded. SELECT bind_sql FROM mysql.bind_info WHERE status = 'using'; -- Verify the result from the above SQL query in the test environment of the new version. bind_sql_0; bind_sql_1; ... -- In the case of a syntax error (ERROR 1064 (42000): You have an error in your SQL syntax), delete the corresponding binding. -- For any other errors (for example, tables are not found), it means that the syntax is compatible. No other operation is needed.