- Docs Home
- About TiDB Cloud
- Get Started
- Develop Applications
- Overview
- Quick Start
- Build a TiDB Developer Cluster
- CRUD SQL in TiDB
- Build a Simple CRUD App with TiDB
- Example Applications
- Connect to TiDB
- Design Database Schema
- Write Data
- Read Data
- Transaction
- Optimize
- Troubleshoot
- Reference
- Cloud Native Development Environment
- Manage Cluster
- Plan Your Cluster
- Create a TiDB Cluster
- Connect to Your TiDB Cluster
- Set Up VPC Peering Connections
- Use an HTAP Cluster with TiFlash
- Scale a TiDB Cluster
- Upgrade a TiDB Cluster
- Delete a TiDB Cluster
- Use TiDB Cloud API (Beta)
- Migrate Data
- Import Sample Data
- Migrate Data into TiDB
- Configure Amazon S3 Access and GCS Access
- Migrate from MySQL-Compatible Databases
- Migrate Incremental Data from MySQL-Compatible Databases
- Migrate from Amazon Aurora MySQL in Bulk
- Import or Migrate from Amazon S3 or GCS to TiDB Cloud
- Import CSV Files from Amazon S3 or GCS into TiDB Cloud
- Import Apache Parquet Files from Amazon S3 or GCS into TiDB Cloud
- Troubleshoot Access Denied Errors during Data Import from Amazon S3
- Export Data from TiDB
- Back Up and Restore
- Monitor and Alert
- Overview
- Built-in Monitoring
- Built-in Alerting
- Third-Party Monitoring Integrations
- Tune Performance
- Overview
- Analyze Performance
- SQL Tuning
- Overview
- Understanding the Query Execution Plan
- SQL Optimization Process
- Overview
- Logic Optimization
- Physical Optimization
- Prepare Execution Plan Cache
- Control Execution Plans
- TiKV Follower Read
- Coprocessor Cache
- Garbage Collection (GC)
- Tune TiFlash performance
- Manage User Access
- Billing
- Reference
- TiDB Cluster Architecture
- TiDB Cloud Cluster Limits and Quotas
- TiDB Limitations
- SQL
- Explore SQL with TiDB
- SQL Language Structure and Syntax
- SQL Statements
ADD COLUMN
ADD INDEX
ADMIN
ADMIN CANCEL DDL
ADMIN CHECKSUM TABLE
ADMIN CHECK [TABLE|INDEX]
ADMIN SHOW DDL [JOBS|QUERIES]
ALTER DATABASE
ALTER INDEX
ALTER TABLE
ALTER TABLE COMPACT
ALTER USER
ANALYZE TABLE
BATCH
BEGIN
CHANGE COLUMN
COMMIT
CHANGE DRAINER
CHANGE PUMP
CREATE [GLOBAL|SESSION] BINDING
CREATE DATABASE
CREATE INDEX
CREATE ROLE
CREATE SEQUENCE
CREATE TABLE LIKE
CREATE TABLE
CREATE USER
CREATE VIEW
DEALLOCATE
DELETE
DESC
DESCRIBE
DO
DROP [GLOBAL|SESSION] BINDING
DROP COLUMN
DROP DATABASE
DROP INDEX
DROP ROLE
DROP SEQUENCE
DROP STATS
DROP TABLE
DROP USER
DROP VIEW
EXECUTE
EXPLAIN ANALYZE
EXPLAIN
FLASHBACK TABLE
FLUSH PRIVILEGES
FLUSH STATUS
FLUSH TABLES
GRANT <privileges>
GRANT <role>
INSERT
KILL [TIDB]
MODIFY COLUMN
PREPARE
RECOVER TABLE
RENAME INDEX
RENAME TABLE
REPLACE
REVOKE <privileges>
REVOKE <role>
ROLLBACK
SELECT
SET DEFAULT ROLE
SET [NAMES|CHARACTER SET]
SET PASSWORD
SET ROLE
SET TRANSACTION
SET [GLOBAL|SESSION] <variable>
SHOW ANALYZE STATUS
SHOW [GLOBAL|SESSION] BINDINGS
SHOW BUILTINS
SHOW CHARACTER SET
SHOW COLLATION
SHOW [FULL] COLUMNS FROM
SHOW CREATE SEQUENCE
SHOW CREATE TABLE
SHOW CREATE USER
SHOW DATABASES
SHOW DRAINER STATUS
SHOW ENGINES
SHOW ERRORS
SHOW [FULL] FIELDS FROM
SHOW GRANTS
SHOW INDEX [FROM|IN]
SHOW INDEXES [FROM|IN]
SHOW KEYS [FROM|IN]
SHOW MASTER STATUS
SHOW PLUGINS
SHOW PRIVILEGES
SHOW [FULL] PROCESSSLIST
SHOW PROFILES
SHOW PUMP STATUS
SHOW SCHEMAS
SHOW STATS_HEALTHY
SHOW STATS_HISTOGRAMS
SHOW STATS_META
SHOW STATUS
SHOW TABLE NEXT_ROW_ID
SHOW TABLE REGIONS
SHOW TABLE STATUS
SHOW [FULL] TABLES
SHOW [GLOBAL|SESSION] VARIABLES
SHOW WARNINGS
SHUTDOWN
SPLIT REGION
START TRANSACTION
TABLE
TRACE
TRUNCATE
UPDATE
USE
WITH
- Data Types
- Functions and Operators
- Overview
- Type Conversion in Expression Evaluation
- Operators
- Control Flow Functions
- String Functions
- Numeric Functions and Operators
- Date and Time Functions
- Bit Functions and Operators
- Cast Functions and Operators
- Encryption and Compression Functions
- Locking Functions
- Information Functions
- JSON Functions
- Aggregate (GROUP BY) Functions
- Window Functions
- Miscellaneous Functions
- Precision Math
- Set Operations
- List of Expressions for Pushdown
- TiDB Specific Functions
- Clustered Indexes
- Constraints
- Generated Columns
- SQL Mode
- Table Attributes
- Transactions
- Views
- Partitioning
- Temporary Tables
- Cached Tables
- Character Set and Collation
- Read Historical Data
- System Tables
mysql
- INFORMATION_SCHEMA
- Overview
ANALYZE_STATUS
CLIENT_ERRORS_SUMMARY_BY_HOST
CLIENT_ERRORS_SUMMARY_BY_USER
CLIENT_ERRORS_SUMMARY_GLOBAL
CHARACTER_SETS
CLUSTER_INFO
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
DATA_LOCK_WAITS
DDL_JOBS
DEADLOCKS
ENGINES
KEY_COLUMN_USAGE
PARTITIONS
PROCESSLIST
REFERENTIAL_CONSTRAINTS
SCHEMATA
SEQUENCES
SESSION_VARIABLES
SLOW_QUERY
STATISTICS
TABLES
TABLE_CONSTRAINTS
TABLE_STORAGE_STATS
TIDB_HOT_REGIONS_HISTORY
TIDB_INDEXES
TIDB_SERVERS_INFO
TIDB_TRX
TIFLASH_REPLICA
TIKV_REGION_PEERS
TIKV_REGION_STATUS
TIKV_STORE_STATUS
USER_PRIVILEGES
VIEWS
- System Variables
- API Reference
- Storage Engines
- Dumpling
- Table Filter
- Troubleshoot Inconsistency Between Data and Indexes
- FAQs
- Release Notes
- Support
- Glossary
AUTO_INCREMENT
This document introduces the AUTO_INCREMENT
column attribute, including its concept, implementation principles, auto-increment related features, and restrictions.
The AUTO_INCREMENT
attribute might cause hotspot in production environments. See Troubleshoot HotSpot Issues for details. It is recommended to use AUTO_RANDOM
instead.
The AUTO_INCREMENT
attribute might cause hotspot in production environments. See Troubleshoot HotSpot Issues for details. It is recommended to use AUTO_RANDOM
instead.
Concept
AUTO_INCREMENT
is a column attribute that is used to automatically fill in default column values. When the INSERT
statement does not specify values for the AUTO_INCREMENT
column, the system automatically assigns values to this column.
For performance reasons, AUTO_INCREMENT
numbers are allocated in a batch of values (30 thousand by default) to each TiDB server. This means that while AUTO_INCREMENT
numbers are guaranteed to be unique, values assigned to an INSERT
statement will only be monotonic on a per TiDB server basis.
The following is a basic example of AUTO_INCREMENT
:
CREATE TABLE t(id int PRIMARY KEY AUTO_INCREMENT, c int);
INSERT INTO t(c) VALUES (1);
INSERT INTO t(c) VALUES (2);
INSERT INTO t(c) VALUES (3), (4), (5);
mysql> SELECT * FROM t;
+----+---+
| id | c |
+----+---+
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
| 4 | 4 |
| 5 | 5 |
+----+---+
5 rows in set (0.01 sec)
In addition, AUTO_INCREMENT
also supports the INSERT
statements that explicitly specify column values. In such cases, TiDB stores the explicitly specified values:
INSERT INTO t(id, c) VALUES (6, 6);
mysql> SELECT * FROM t;
+----+---+
| id | c |
+----+---+
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
| 4 | 4 |
| 5 | 5 |
| 6 | 6 |
+----+---+
6 rows in set (0.01 sec)
The usage above is the same as that of AUTO_INCREMENT
in MySQL. However, in terms of the specific value that is implicitly assigned, TiDB differs from MySQL significantly.
Implementation principles
TiDB implements the AUTO_INCREMENT
implicit assignment in the following way:
For each auto-increment column, a globally visible key-value pair is used to record the maximum ID that has been assigned. In a distributed environment, communication between nodes has some overhead. Therefore, to avoid the issue of write amplification, each TiDB node applies for a batch of consecutive IDs as caches when assigning IDs, and then applies for the next batch of IDs after the first batch is assigned. Therefore, TiDB nodes do not apply to the storage node for IDs when assigning IDs each time. For example:
CREATE TABLE t(id int UNIQUE KEY AUTO_INCREMENT, c int);
Assume two TiDB instances, A
and B
, in the cluster. If you execute an INSERT
statement on the t
table on A
and B
respectively:
INSERT INTO t (c) VALUES (1)
Instance A
might cache the auto-increment IDs of [1,30000]
, and instance B
might cache the auto-increment IDs of [30001,60000]
. In INSERT
statements to be executed, these cached IDs of each instance will be assigned to the AUTO_INCREMENT
column as the default values.
Basic Features
Uniqueness
When the cluster has multiple TiDB instances, if the table schema contains the auto-increment IDs, it is recommended not to use explicit insert and implicit assignment at the same time, which means using the default values of the auto-increment column and the custom values. Otherwise, it might break the uniqueness of implicitly assigned values.
In the example above, perform the following operations in order:
The client inserts a statement
INSERT INTO t VALUES (2, 1)
to instanceB
, which setsid
to2
. The statement is successfully executed.The client sends a statement
INSERT INTO t (c) (1)
to instanceA
. This statement does not specify the value ofid
, so the ID is assigned byA
. At present, becauseA
caches the IDs of[1, 30000]
, it might assign2
as the value of the auto-increment ID, and increases the local counter by1
. At this time, the data whose ID is2
already exists in the database, so theDuplicated Error
error is returned.
Monotonicity
TiDB guarantees that AUTO_INCREMENT
values are monotonic (always increasing) on a per-server basis. Consider the following example where consecutive AUTO_INCREMENT
values of 1-3 are generated:
CREATE TABLE t (a int PRIMARY KEY AUTO_INCREMENT, b timestamp NOT NULL DEFAULT NOW());
INSERT INTO t (a) VALUES (NULL), (NULL), (NULL);
SELECT * FROM t;
Query OK, 0 rows affected (0.11 sec)
Query OK, 3 rows affected (0.02 sec)
Records: 3 Duplicates: 0 Warnings: 0
+---+---------------------+
| a | b |
+---+---------------------+
| 1 | 2020-09-09 20:38:22 |
| 2 | 2020-09-09 20:38:22 |
| 3 | 2020-09-09 20:38:22 |
+---+---------------------+
3 rows in set (0.00 sec)
Monotonicity is not the same guarantee as consecutive. Consider the following example:
CREATE TABLE t (id INT NOT NULL PRIMARY KEY auto_increment, a VARCHAR(10), cnt INT NOT NULL DEFAULT 1, UNIQUE KEY (a));
INSERT INTO t (a) VALUES ('A'), ('B');
SELECT * FROM t;
INSERT INTO t (a) VALUES ('A'), ('C') ON DUPLICATE KEY UPDATE cnt = cnt + 1;
SELECT * FROM t;
Query OK, 0 rows affected (0.00 sec)
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0
+----+------+-----+
| id | a | cnt |
+----+------+-----+
| 1 | A | 1 |
| 2 | B | 1 |
+----+------+-----+
2 rows in set (0.00 sec)
Query OK, 3 rows affected (0.00 sec)
Records: 2 Duplicates: 1 Warnings: 0
+----+------+-----+
| id | a | cnt |
+----+------+-----+
| 1 | A | 2 |
| 2 | B | 1 |
| 4 | C | 1 |
+----+------+-----+
3 rows in set (0.00 sec)
In this example, the AUTO_INCREMENT
value of 3
is allocated for the INSERT
of the key A
in INSERT INTO t (a) VALUES ('A'), ('C') ON DUPLICATE KEY UPDATE cnt = cnt + 1;
but never used because this INSERT
statement contains a duplicate key A
. This leads to a gap where the sequence is non-consecutive. This behavior is considered legal, even though it differs from MySQL. MySQL will also have gaps in the sequence in other scenarios such as transactions being aborted and rolled back.
AUTO_ID_CACHE
The AUTO_INCREMENT
sequence might appear to jump dramatically if an INSERT
operation is performed against a different TiDB server. This is caused by the fact that each server has its own cache of AUTO_INCREMENT
values:
CREATE TABLE t (a int PRIMARY KEY AUTO_INCREMENT, b timestamp NOT NULL DEFAULT NOW());
INSERT INTO t (a) VALUES (NULL), (NULL), (NULL);
INSERT INTO t (a) VALUES (NULL);
SELECT * FROM t;
Query OK, 1 row affected (0.03 sec)
+---------+---------------------+
| a | b |
+---------+---------------------+
| 1 | 2020-09-09 20:38:22 |
| 2 | 2020-09-09 20:38:22 |
| 3 | 2020-09-09 20:38:22 |
| 2000001 | 2020-09-09 20:43:43 |
+---------+---------------------+
4 rows in set (0.00 sec)
A new INSERT
operation against the initial TiDB server generates the AUTO_INCREMENT
value of 4
. This is because the initial TiDB server still has space left in the AUTO_INCREMENT
cache for allocation. In this case, the sequence of values cannot be considered globally monotonic, because the value of 4
is inserted after the value of 2000001
:
mysql> INSERT INTO t (a) VALUES (NULL);
Query OK, 1 row affected (0.01 sec)
mysql> SELECT * FROM t ORDER BY b;
+---------+---------------------+
| a | b |
+---------+---------------------+
| 1 | 2020-09-09 20:38:22 |
| 2 | 2020-09-09 20:38:22 |
| 3 | 2020-09-09 20:38:22 |
| 2000001 | 2020-09-09 20:43:43 |
| 4 | 2020-09-09 20:44:43 |
+---------+---------------------+
5 rows in set (0.00 sec)
The AUTO_INCREMENT
cache does not persist across TiDB server restarts. The following INSERT
statement is performed after the initial TiDB server is restarted:
mysql> INSERT INTO t (a) VALUES (NULL);
Query OK, 1 row affected (0.01 sec)
mysql> SELECT * FROM t ORDER BY b;
+---------+---------------------+
| a | b |
+---------+---------------------+
| 1 | 2020-09-09 20:38:22 |
| 2 | 2020-09-09 20:38:22 |
| 3 | 2020-09-09 20:38:22 |
| 2000001 | 2020-09-09 20:43:43 |
| 4 | 2020-09-09 20:44:43 |
| 2030001 | 2020-09-09 20:54:11 |
+---------+---------------------+
6 rows in set (0.00 sec)
A high rate of TiDB server restarts might contribute to the exhaustion of AUTO_INCREMENT
values. In the above example, the initial TiDB server still has values [5-30000]
free in its cache. These values are lost, and will not be reallocated.
It is not recommended to rely onAUTO_INCREMENT
values being continuous. Consider the following example, where a TiDB server has a cache of values [2000001-2030000]
. By manually inserting the value 2029998
, you can see the behavior as a new cache range is retrieved:
mysql> INSERT INTO t (a) VALUES (2029998);
Query OK, 1 row affected (0.01 sec)
mysql> INSERT INTO t (a) VALUES (NULL);
Query OK, 1 row affected (0.01 sec)
mysql> INSERT INTO t (a) VALUES (NULL);
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO t (a) VALUES (NULL);
Query OK, 1 row affected (0.02 sec)
mysql> INSERT INTO t (a) VALUES (NULL);
Query OK, 1 row affected (0.01 sec)
mysql> SELECT * FROM t ORDER BY b;
+---------+---------------------+
| a | b |
+---------+---------------------+
| 1 | 2020-09-09 20:38:22 |
| 2 | 2020-09-09 20:38:22 |
| 3 | 2020-09-09 20:38:22 |
| 2000001 | 2020-09-09 20:43:43 |
| 4 | 2020-09-09 20:44:43 |
| 2030001 | 2020-09-09 20:54:11 |
| 2029998 | 2020-09-09 21:08:11 |
| 2029999 | 2020-09-09 21:08:11 |
| 2030000 | 2020-09-09 21:08:11 |
| 2060001 | 2020-09-09 21:08:11 |
| 2060002 | 2020-09-09 21:08:11 |
+---------+---------------------+
11 rows in set (0.00 sec)
After the value 2030000
is inserted, the next value is 2060001
. This jump in sequence is due to another TiDB server obtaining the intermediate cache range of [2030001-2060000]
. When multiple TiDB servers are deployed, there will be gaps in the AUTO_INCREMENT
sequence because cache requests are interleaved.
Cache size control
In earlier versions of TiDB, the cache size of the auto-increment ID was transparent to users. Starting from v3.0.14, v3.1.2, and v4.0.rc-2, TiDB has introduced the AUTO_ID_CACHE
table option to allow users to set the cache size for allocating the auto-increment ID.
mysql> CREATE TABLE t(a int AUTO_INCREMENT key) AUTO_ID_CACHE 100;
Query OK, 0 rows affected (0.02 sec)
mysql> INSERT INTO t values();
Query OK, 1 row affected (0.00 sec)
Records: 1 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM t;
+---+
| a |
+---+
| 1 |
+---+
1 row in set (0.01 sec)
At this time, if you invalidate the auto-increment cache of this column and redo the implicit insertion, the result is as follows:
mysql> DELETE FROM t;
Query OK, 1 row affected (0.01 sec)
mysql> RENAME TABLE t to t1;
Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO t1 values()
Query OK, 1 row affected (0.00 sec)
mysql> SELECT * FROM t;
+-----+
| a |
+-----+
| 101 |
+-----+
1 row in set (0.00 sec)
The re-assigned value is 101
. This shows that the size of cache for allocating the auto-increment ID is 100
.
In addition, when the length of consecutive IDs in a batch INSERT
statement exceeds the length of AUTO_ID_CACHE
, TiDB increases the cache size accordingly to ensure that the statement can be inserted properly.
Auto-increment step size and offset
Starting from v3.0.9 and v4.0.0-rc.1, similar to the behavior of MySQL, the value implicitly assigned to the auto-increment column is controlled by the @@auto_increment_increment
and @@auto_increment_offset
session variables.
The value (ID) implicitly assigned to auto-increment columns satisfies the following equation:
(ID - auto_increment_offset) % auto_increment_increment == 0
Restrictions
Currently, AUTO_INCREMENT
has the following restrictions when used in TiDB:
- It must be defined on the first column of the primary key or the first column of an index.
- It must be defined on the column of
INTEGER
,FLOAT
, orDOUBLE
type. - It cannot be specified on the same column with the
DEFAULT
column value. ALTER TABLE
cannot be used to add theAUTO_INCREMENT
attribute.ALTER TABLE
can be used to remove theAUTO_INCREMENT
attribute. However, starting from v2.1.18 and v3.0.4, TiDB uses the session variable@@tidb_allow_remove_auto_inc
to control whetherALTER TABLE MODIFY
orALTER TABLE CHANGE
can be used to remove theAUTO_INCREMENT
attribute of a column. By default, you cannot useALTER TABLE MODIFY
orALTER TABLE CHANGE
to remove theAUTO_INCREMENT
attribute.ALTER TABLE
requires theFORCE
option to set theAUTO_INCREMENT
value to a smaller value.- Setting the
AUTO_INCREMENT
to a value smaller thanMAX(<auto_increment_column>)
leads to duplicate keys because pre-existing values are not skipped.