- Docs Home
- About TiDB Cloud
- Get Started
- Develop Applications
- Overview
- Quick Start
- Build a TiDB Developer Cluster
- CRUD SQL in TiDB
- Build a Simple CRUD App with TiDB
- Example Applications
- Connect to TiDB
- Design Database Schema
- Write Data
- Read Data
- Transaction
- Optimize
- Troubleshoot
- Reference
- Cloud Native Development Environment
- Manage Cluster
- Plan Your Cluster
- Create a TiDB Cluster
- Connect to Your TiDB Cluster
- Set Up VPC Peering Connections
- Use an HTAP Cluster with TiFlash
- Scale a TiDB Cluster
- Upgrade a TiDB Cluster
- Delete a TiDB Cluster
- Use TiDB Cloud API (Beta)
- Migrate Data
- Import Sample Data
- Migrate Data into TiDB
- Configure Amazon S3 Access and GCS Access
- Migrate from MySQL-Compatible Databases
- Migrate Incremental Data from MySQL-Compatible Databases
- Migrate from Amazon Aurora MySQL in Bulk
- Import or Migrate from Amazon S3 or GCS to TiDB Cloud
- Import CSV Files from Amazon S3 or GCS into TiDB Cloud
- Import Apache Parquet Files from Amazon S3 or GCS into TiDB Cloud
- Troubleshoot Access Denied Errors during Data Import from Amazon S3
- Export Data from TiDB
- Back Up and Restore
- Monitor and Alert
- Overview
- Built-in Monitoring
- Built-in Alerting
- Third-Party Monitoring Integrations
- Tune Performance
- Overview
- Analyze Performance
- SQL Tuning
- Overview
- Understanding the Query Execution Plan
- SQL Optimization Process
- Overview
- Logic Optimization
- Physical Optimization
- Prepare Execution Plan Cache
- Control Execution Plans
- TiKV Follower Read
- Coprocessor Cache
- Garbage Collection (GC)
- Tune TiFlash performance
- Manage User Access
- Billing
- Reference
- TiDB Cluster Architecture
- TiDB Cloud Cluster Limits and Quotas
- TiDB Limitations
- SQL
- Explore SQL with TiDB
- SQL Language Structure and Syntax
- SQL Statements
ADD COLUMN
ADD INDEX
ADMIN
ADMIN CANCEL DDL
ADMIN CHECKSUM TABLE
ADMIN CHECK [TABLE|INDEX]
ADMIN SHOW DDL [JOBS|QUERIES]
ALTER DATABASE
ALTER INDEX
ALTER TABLE
ALTER TABLE COMPACT
ALTER USER
ANALYZE TABLE
BATCH
BEGIN
CHANGE COLUMN
COMMIT
CHANGE DRAINER
CHANGE PUMP
CREATE [GLOBAL|SESSION] BINDING
CREATE DATABASE
CREATE INDEX
CREATE ROLE
CREATE SEQUENCE
CREATE TABLE LIKE
CREATE TABLE
CREATE USER
CREATE VIEW
DEALLOCATE
DELETE
DESC
DESCRIBE
DO
DROP [GLOBAL|SESSION] BINDING
DROP COLUMN
DROP DATABASE
DROP INDEX
DROP ROLE
DROP SEQUENCE
DROP STATS
DROP TABLE
DROP USER
DROP VIEW
EXECUTE
EXPLAIN ANALYZE
EXPLAIN
FLASHBACK TABLE
FLUSH PRIVILEGES
FLUSH STATUS
FLUSH TABLES
GRANT <privileges>
GRANT <role>
INSERT
KILL [TIDB]
MODIFY COLUMN
PREPARE
RECOVER TABLE
RENAME INDEX
RENAME TABLE
REPLACE
REVOKE <privileges>
REVOKE <role>
ROLLBACK
SELECT
SET DEFAULT ROLE
SET [NAMES|CHARACTER SET]
SET PASSWORD
SET ROLE
SET TRANSACTION
SET [GLOBAL|SESSION] <variable>
SHOW ANALYZE STATUS
SHOW [GLOBAL|SESSION] BINDINGS
SHOW BUILTINS
SHOW CHARACTER SET
SHOW COLLATION
SHOW [FULL] COLUMNS FROM
SHOW CREATE SEQUENCE
SHOW CREATE TABLE
SHOW CREATE USER
SHOW DATABASES
SHOW DRAINER STATUS
SHOW ENGINES
SHOW ERRORS
SHOW [FULL] FIELDS FROM
SHOW GRANTS
SHOW INDEX [FROM|IN]
SHOW INDEXES [FROM|IN]
SHOW KEYS [FROM|IN]
SHOW MASTER STATUS
SHOW PLUGINS
SHOW PRIVILEGES
SHOW [FULL] PROCESSSLIST
SHOW PROFILES
SHOW PUMP STATUS
SHOW SCHEMAS
SHOW STATS_HEALTHY
SHOW STATS_HISTOGRAMS
SHOW STATS_META
SHOW STATUS
SHOW TABLE NEXT_ROW_ID
SHOW TABLE REGIONS
SHOW TABLE STATUS
SHOW [FULL] TABLES
SHOW [GLOBAL|SESSION] VARIABLES
SHOW WARNINGS
SHUTDOWN
SPLIT REGION
START TRANSACTION
TABLE
TRACE
TRUNCATE
UPDATE
USE
WITH
- Data Types
- Functions and Operators
- Overview
- Type Conversion in Expression Evaluation
- Operators
- Control Flow Functions
- String Functions
- Numeric Functions and Operators
- Date and Time Functions
- Bit Functions and Operators
- Cast Functions and Operators
- Encryption and Compression Functions
- Locking Functions
- Information Functions
- JSON Functions
- Aggregate (GROUP BY) Functions
- Window Functions
- Miscellaneous Functions
- Precision Math
- Set Operations
- List of Expressions for Pushdown
- TiDB Specific Functions
- Clustered Indexes
- Constraints
- Generated Columns
- SQL Mode
- Table Attributes
- Transactions
- Views
- Partitioning
- Temporary Tables
- Cached Tables
- Character Set and Collation
- Read Historical Data
- System Tables
mysql
- INFORMATION_SCHEMA
- Overview
ANALYZE_STATUS
CLIENT_ERRORS_SUMMARY_BY_HOST
CLIENT_ERRORS_SUMMARY_BY_USER
CLIENT_ERRORS_SUMMARY_GLOBAL
CHARACTER_SETS
CLUSTER_INFO
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
DATA_LOCK_WAITS
DDL_JOBS
DEADLOCKS
ENGINES
KEY_COLUMN_USAGE
PARTITIONS
PROCESSLIST
REFERENTIAL_CONSTRAINTS
SCHEMATA
SEQUENCES
SESSION_VARIABLES
SLOW_QUERY
STATISTICS
TABLES
TABLE_CONSTRAINTS
TABLE_STORAGE_STATS
TIDB_HOT_REGIONS_HISTORY
TIDB_INDEXES
TIDB_SERVERS_INFO
TIDB_TRX
TIFLASH_REPLICA
TIKV_REGION_PEERS
TIKV_REGION_STATUS
TIKV_STORE_STATUS
USER_PRIVILEGES
VIEWS
- System Variables
- API Reference
- Storage Engines
- Dumpling
- Table Filter
- Troubleshoot Inconsistency Between Data and Indexes
- FAQs
- Release Notes
- Support
- Glossary
Bookshop Example Application
Bookshop is a virtual online bookstore application through which you can buy books of various categories and rate the books you have read.
To make your reading on the application developer guide more smoothly, we present the example SQL statements based on the table structures and data of the Bookshop application. This document focuses on the methods of importing the table structures and data as well as the definitions of the table structures.
Import table structures and data
You can import Bookshop table structures and data either via TiUP or via the import feature of TiDB Cloud.
For TiDB Cloud, you can skip Method 1: Via tiup demo
and import Bookshop table structures via the import feature of TiDB Cloud.
Method 1: Via tiup demo
If your TiDB cluster is deployed using TiUP or you can connect to your TiDB server, you can quickly generate and import sample data for the Bookshop application by running the following command:
If your TiDB cluster is deployed using TiUP or you can connect to your TiDB server, you can quickly generate and import sample data for the Bookshop application by running the following command:
tiup demo bookshop prepare
By default, this command enables your application to connect to port 4000
on address 127.0.0.1
, enables you to log in as the root
user without a password, and creates a table structure in the database named bookshop
.
Configure connection information
The following table lists the connection parameters. You can change their default settings to match your environment.
Parameter | Abbreviation | Default value | Description |
---|---|---|---|
--password | -p | None | Database user password |
--host | -H | 127.0.0.1 | Database address |
--port | -P | 4000 | Database port |
--db | -D | bookshop | Database name |
--user | -U | root | Database user |
For example, if you want to connect to a database on TiDB Cloud, you can specify the connection information as follows:
tiup demo bookshop prepare -U root -H tidb.xxx.yyy.ap-northeast-1.prod.aws.tidbcloud.com -P 4000 -p
Set the data volume
You can specify the volume of data to be generated in each database table by configuring the following parameters:
Parameter | Default value | Description |
---|---|---|
--users | 10000 | The number of rows of data to be generated in the users table |
--authors | 20000 | The number of rows to be generated in the authors table |
--books | 20000 | The number of rows of data to be generated in the books table |
--orders | 300000 | The number of rows of data to be generated in the orders table |
--ratings | 300000 | The number of rows of data to be generated in the ratings table |
For example, the following command is executed to generate:
- 200,000 rows of user information via the
--users
parameter - 500,000 rows of book information via the
--books
parameter - 100,000 rows of author information via the
--authors
parameter - 1,000,000 rows of rating records via the
--ratings
parameter - 1,000,000 rows of order records via the
--orders
parameter
tiup demo bookshop prepare --users=200000 --books=500000 --authors=100000 --ratings=1000000 --orders=1000000 --drop-tables
You can delete the original table structure through the --drop-tables
parameter. For more parameter descriptions, run the tiup demo bookshop --help
command.
Method 2: Via TiDB Cloud Import
On the database details page of TiDB Cloud, click the Import button to enter the Data Import Task page. On this page, perform the following steps to import the Bookshop sample data from AWS S3 to TiDB Cloud.
Copy the following Bucket URL and Role-ARN to the corresponding input boxes:
Bucket URL:
s3://developer.pingcap.com/bookshop/
Role-ARN:
arn:aws:iam::494090988690:role/s3-tidb-cloud-developer-access
In this example, the following data is generated in advance:
- 200,000 rows of user information
- 500,000 rows of book information
- 100,000 rows of author information
- 1,000,000 rows of rating records
- 1,000,000 rows of order records
Select US West (Oregon) for Bucket Region.
Select TiDB Dumpling for Data Format.
Enter database login information.
Click the Import button to confirm the import.
Wait for TiDB Cloud to complete the import.
If the following error message appears during the import process, run the
DROP DATABASE bookshop;
command to clear the previously created sample database and then import data again.table(s) [
bookshop
.authors
,bookshop
.book_authors
,bookshop
.books
,bookshop
.orders
,bookshop
.ratings
,bookshop
.users
] are not empty.
For more information about TiDB Cloud, see TiDB Cloud Documentation.
View data import status
After the import is completed, you can view the data volume information of each table by executing the following SQL statement:
SELECT
CONCAT(table_schema,'.',table_name) AS 'Table Name',
table_rows AS 'Number of Rows',
CONCAT(ROUND(data_length/(1024*1024*1024),4),'G') AS 'Data Size',
CONCAT(ROUND(index_length/(1024*1024*1024),4),'G') AS 'Index Size',
CONCAT(ROUND((data_length+index_length)/(1024*1024*1024),4),'G') AS 'Total'
FROM
information_schema.TABLES
WHERE table_schema LIKE 'bookshop';
The result is as follows:
+-----------------------+----------------+-----------+------------+---------+
| Table Name | Number of Rows | Data Size | Index Size | Total |
+-----------------------+----------------+-----------+------------+---------+
| bookshop.orders | 1000000 | 0.0373G | 0.0075G | 0.0447G |
| bookshop.book_authors | 1000000 | 0.0149G | 0.0149G | 0.0298G |
| bookshop.ratings | 4000000 | 0.1192G | 0.1192G | 0.2384G |
| bookshop.authors | 100000 | 0.0043G | 0.0000G | 0.0043G |
| bookshop.users | 195348 | 0.0048G | 0.0021G | 0.0069G |
| bookshop.books | 1000000 | 0.0546G | 0.0000G | 0.0546G |
+-----------------------+----------------+-----------+------------+---------+
6 rows in set (0.03 sec)
Description of the tables
This section describes the database tables of the Bookshop application in detail.
books
table
This table stores the basic information of books.
Field name | Type | Description |
---|---|---|
id | bigint(20) | Unique ID of a book |
title | varchar(100) | Title of a book |
type | enum | Type of a book (for example, magazine, animation, or teaching aids) |
stock | bigint(20) | Stock |
price | decimal(15,2) | Price |
published_at | datetime | Date of publish |
authors
table
This table stores basic information of authors.
Field name | Type | Description |
---|---|---|
id | bigint(20) | Unique ID of an author |
name | varchar(100) | Name of an author |
gender | tinyint(1) | Biological gender (0: female, 1: male, NULL: unknown) |
birth_year | smallint(6) | Year of birth |
death_year | smallint(6) | Year of death |
users
table
This table stores information of Bookshop users.
Field name | Type | Description |
---|---|---|
id | bigint(20) | Unique ID of a user |
balance | decimal(15,2) | Balance |
nickname | varchar(100) | Nickname |
ratings
table
This table stores records of user ratings on books.
Field name | Type | Description |
---|---|---|
book_id | bigint | Unique ID of a book (linked to books) |
user_id | bigint | User's unique identifier (linked to users) |
score | tinyint | User rating (1-5) |
rated_at | datetime | Rating time |
book_authors
table
An author may write multiple books, and a book may involve more than one author. This table stores the correspondence between books and authors.
Field name | Type | Description |
---|---|---|
book_id | bigint(20) | Unique ID of a book (linked to books) |
author_id | bigint(20) | Unique ID of an author(Link to authors) |
orders
table
This table stores user purchase information.
Field name | Type | Description |
---|---|---|
id | bigint(20) | Unique ID of an order |
book_id | bigint(20) | Unique ID of a book (linked to books) |
user_id | bigint(20) | User unique identifier (associated with users) |
quantity | tinyint(4) | Purchase quantity |
ordered_at | datetime | Purchase time |
Database initialization script dbinit.sql
If you want to manually create database table structures in the Bookshop application, run the following SQL statements:
CREATE DATABASE IF NOT EXISTS `bookshop`;
DROP TABLE IF EXISTS `bookshop`.`books`;
CREATE TABLE `bookshop`.`books` (
`id` bigint(20) AUTO_RANDOM NOT NULL,
`title` varchar(100) NOT NULL,
`type` enum('Magazine', 'Novel', 'Life', 'Arts', 'Comics', 'Education & Reference', 'Humanities & Social Sciences', 'Science & Technology', 'Kids', 'Sports') NOT NULL,
`published_at` datetime NOT NULL,
`stock` int(11) DEFAULT '0',
`price` decimal(15,2) DEFAULT '0.0',
PRIMARY KEY (`id`) CLUSTERED
) DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin;
DROP TABLE IF EXISTS `bookshop`.`authors`;
CREATE TABLE `bookshop`.`authors` (
`id` bigint(20) AUTO_RANDOM NOT NULL,
`name` varchar(100) NOT NULL,
`gender` tinyint(1) DEFAULT NULL,
`birth_year` smallint(6) DEFAULT NULL,
`death_year` smallint(6) DEFAULT NULL,
PRIMARY KEY (`id`) CLUSTERED
) DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin;
DROP TABLE IF EXISTS `bookshop`.`book_authors`;
CREATE TABLE `bookshop`.`book_authors` (
`book_id` bigint(20) NOT NULL,
`author_id` bigint(20) NOT NULL,
PRIMARY KEY (`book_id`,`author_id`) CLUSTERED
) DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin;
DROP TABLE IF EXISTS `bookshop`.`ratings`;
CREATE TABLE `bookshop`.`ratings` (
`book_id` bigint NOT NULL,
`user_id` bigint NOT NULL,
`score` tinyint NOT NULL,
`rated_at` datetime NOT NULL DEFAULT NOW() ON UPDATE NOW(),
PRIMARY KEY (`book_id`,`user_id`) CLUSTERED,
UNIQUE KEY `uniq_book_user_idx` (`book_id`,`user_id`)
) DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin;
ALTER TABLE `bookshop`.`ratings` SET TIFLASH REPLICA 1;
DROP TABLE IF EXISTS `bookshop`.`users`;
CREATE TABLE `bookshop`.`users` (
`id` bigint AUTO_RANDOM NOT NULL,
`balance` decimal(15,2) DEFAULT '0.0',
`nickname` varchar(100) UNIQUE NOT NULL,
PRIMARY KEY (`id`)
) DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin;
DROP TABLE IF EXISTS `bookshop`.`orders`;
CREATE TABLE `bookshop`.`orders` (
`id` bigint(20) AUTO_RANDOM NOT NULL,
`book_id` bigint(20) NOT NULL,
`user_id` bigint(20) NOT NULL,
`quality` tinyint(4) NOT NULL,
`ordered_at` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (`id`) CLUSTERED,
KEY `orders_book_id_idx` (`book_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin