- Docs Home
- About TiDB Cloud
- Get Started
- Develop Applications
- Overview
- Quick Start
- Build a TiDB Developer Cluster
- CRUD SQL in TiDB
- Build a Simple CRUD App with TiDB
- Example Applications
- Connect to TiDB
- Design Database Schema
- Write Data
- Read Data
- Transaction
- Optimize
- Troubleshoot
- Reference
- Cloud Native Development Environment
- Manage Cluster
- Plan Your Cluster
- Create a TiDB Cluster
- Connect to Your TiDB Cluster
- Set Up VPC Peering Connections
- Use an HTAP Cluster with TiFlash
- Scale a TiDB Cluster
- Upgrade a TiDB Cluster
- Delete a TiDB Cluster
- Use TiDB Cloud API (Beta)
- Migrate Data
- Import Sample Data
- Migrate Data into TiDB
- Configure Amazon S3 Access and GCS Access
- Migrate from MySQL-Compatible Databases
- Migrate Incremental Data from MySQL-Compatible Databases
- Migrate from Amazon Aurora MySQL in Bulk
- Import or Migrate from Amazon S3 or GCS to TiDB Cloud
- Import CSV Files from Amazon S3 or GCS into TiDB Cloud
- Import Apache Parquet Files from Amazon S3 or GCS into TiDB Cloud
- Troubleshoot Access Denied Errors during Data Import from Amazon S3
- Export Data from TiDB
- Back Up and Restore
- Monitor and Alert
- Overview
- Built-in Monitoring
- Built-in Alerting
- Third-Party Monitoring Integrations
- Tune Performance
- Overview
- Analyze Performance
- SQL Tuning
- Overview
- Understanding the Query Execution Plan
- SQL Optimization Process
- Overview
- Logic Optimization
- Physical Optimization
- Prepare Execution Plan Cache
- Control Execution Plans
- TiKV Follower Read
- Coprocessor Cache
- Garbage Collection (GC)
- Tune TiFlash performance
- Manage User Access
- Billing
- Reference
- TiDB Cluster Architecture
- TiDB Cloud Cluster Limits and Quotas
- TiDB Limitations
- SQL
- Explore SQL with TiDB
- SQL Language Structure and Syntax
- SQL Statements
ADD COLUMNADD INDEXADMINADMIN CANCEL DDLADMIN CHECKSUM TABLEADMIN CHECK [TABLE|INDEX]ADMIN SHOW DDL [JOBS|QUERIES]ALTER DATABASEALTER INDEXALTER TABLEALTER TABLE COMPACTALTER USERANALYZE TABLEBATCHBEGINCHANGE COLUMNCOMMITCHANGE DRAINERCHANGE PUMPCREATE [GLOBAL|SESSION] BINDINGCREATE DATABASECREATE INDEXCREATE ROLECREATE SEQUENCECREATE TABLE LIKECREATE TABLECREATE USERCREATE VIEWDEALLOCATEDELETEDESCDESCRIBEDODROP [GLOBAL|SESSION] BINDINGDROP COLUMNDROP DATABASEDROP INDEXDROP ROLEDROP SEQUENCEDROP STATSDROP TABLEDROP USERDROP VIEWEXECUTEEXPLAIN ANALYZEEXPLAINFLASHBACK TABLEFLUSH PRIVILEGESFLUSH STATUSFLUSH TABLESGRANT <privileges>GRANT <role>INSERTKILL [TIDB]MODIFY COLUMNPREPARERECOVER TABLERENAME INDEXRENAME TABLEREPLACEREVOKE <privileges>REVOKE <role>ROLLBACKSELECTSET DEFAULT ROLESET [NAMES|CHARACTER SET]SET PASSWORDSET ROLESET TRANSACTIONSET [GLOBAL|SESSION] <variable>SHOW ANALYZE STATUSSHOW [GLOBAL|SESSION] BINDINGSSHOW BUILTINSSHOW CHARACTER SETSHOW COLLATIONSHOW [FULL] COLUMNS FROMSHOW CREATE SEQUENCESHOW CREATE TABLESHOW CREATE USERSHOW DATABASESSHOW DRAINER STATUSSHOW ENGINESSHOW ERRORSSHOW [FULL] FIELDS FROMSHOW GRANTSSHOW INDEX [FROM|IN]SHOW INDEXES [FROM|IN]SHOW KEYS [FROM|IN]SHOW MASTER STATUSSHOW PLUGINSSHOW PRIVILEGESSHOW [FULL] PROCESSSLISTSHOW PROFILESSHOW PUMP STATUSSHOW SCHEMASSHOW STATS_HEALTHYSHOW STATS_HISTOGRAMSSHOW STATS_METASHOW STATUSSHOW TABLE NEXT_ROW_IDSHOW TABLE REGIONSSHOW TABLE STATUSSHOW [FULL] TABLESSHOW [GLOBAL|SESSION] VARIABLESSHOW WARNINGSSHUTDOWNSPLIT REGIONSTART TRANSACTIONTABLETRACETRUNCATEUPDATEUSEWITH
- Data Types
- Functions and Operators
- Overview
- Type Conversion in Expression Evaluation
- Operators
- Control Flow Functions
- String Functions
- Numeric Functions and Operators
- Date and Time Functions
- Bit Functions and Operators
- Cast Functions and Operators
- Encryption and Compression Functions
- Locking Functions
- Information Functions
- JSON Functions
- Aggregate (GROUP BY) Functions
- Window Functions
- Miscellaneous Functions
- Precision Math
- Set Operations
- List of Expressions for Pushdown
- TiDB Specific Functions
- Clustered Indexes
- Constraints
- Generated Columns
- SQL Mode
- Table Attributes
- Transactions
- Views
- Partitioning
- Temporary Tables
- Cached Tables
- Character Set and Collation
- Read Historical Data
- System Tables
mysql- INFORMATION_SCHEMA
- Overview
ANALYZE_STATUSCLIENT_ERRORS_SUMMARY_BY_HOSTCLIENT_ERRORS_SUMMARY_BY_USERCLIENT_ERRORS_SUMMARY_GLOBALCHARACTER_SETSCLUSTER_INFOCOLLATIONSCOLLATION_CHARACTER_SET_APPLICABILITYCOLUMNSDATA_LOCK_WAITSDDL_JOBSDEADLOCKSENGINESKEY_COLUMN_USAGEPARTITIONSPROCESSLISTREFERENTIAL_CONSTRAINTSSCHEMATASEQUENCESSESSION_VARIABLESSLOW_QUERYSTATISTICSTABLESTABLE_CONSTRAINTSTABLE_STORAGE_STATSTIDB_HOT_REGIONS_HISTORYTIDB_INDEXESTIDB_SERVERS_INFOTIDB_TRXTIFLASH_REPLICATIKV_REGION_PEERSTIKV_REGION_STATUSTIKV_STORE_STATUSUSER_PRIVILEGESVIEWS
- System Variables
- API Reference
- Storage Engines
- Dumpling
- Table Filter
- Troubleshoot Inconsistency Between Data and Indexes
- FAQs
- Release Notes
- Support
- Glossary
Create a Secondary Index
This document describes how to create a secondary index using SQL and various programming languages and lists the rules of index creation. In this document, the Bookshop application is taken as an example to walk you through the steps of secondary index creation.
Before you start
Before creating a secondary index, do the following:
- Build a TiDB Cluster in TiDB Cloud (Developer Tier).
- Read Schema Design Overview.
- Create a Database.
- Create a Table.
What is secondary index
A secondary index is a logical object in a TiDB cluster. You can simply regard it as a sorting type of data that TiDB uses to improve the query performance. In TiDB, creating a secondary index is an online operation, which does not block any data read and write operations on a table. For each index, TiDB creates references for each row in a table and sorts the references by selected columns instead of by data directly.
For more information about secondary indexes, see Secondary Indexes.
For more information about secondary indexes, see Secondary Indexes.
In TiDB, you can either add a secondary index to an existing table or create a secondary index when creating a new table.
Add a secondary index to an existing table
To add a secondary index to an existing table, you can use the CREATE INDEX statement as follows:
CREATE INDEX {index_name} ON {table_name} ({column_names});
Parameter description:
{index_name}: the name of a secondary index.{table_name}: the table name.{column_names}: the names of the columns to be indexed, separated by semi-colon commas.
Create a secondary index when creating a new table
To create a secondary index at the same time as table creation, you can add a clause containing the KEY keyword to the end of the CREATE TABLE statement:
KEY `{index_name}` (`{column_names}`)
Parameter description:
{index_name}: the name of a secondary index.{column_names}: the names of the columns to be indexed, separated by semi-colon commas.
Rules in secondary index creation
See Best Practices for Indexing.
Example
Suppose you want the bookshop application to support searching for all books published in a given year.
The fields in the books table are as follows:
| Field name | Type | Field description |
|---|---|---|
| id | bigint(20) | Unique ID of the book |
| title | varchar(100) | Book title |
| type | enum | Types of books (for example, magazines, animations, and teaching aids) |
| stock | bigint(20) | Stock |
| price | decimal(15,2) | Price |
| published_at | datetime | Date of publishing |
The books table is created using the following SQL statement:
CREATE TABLE `bookshop`.`books` (
`id` bigint(20) AUTO_RANDOM NOT NULL,
`title` varchar(100) NOT NULL,
`type` enum('Magazine', 'Novel', 'Life', 'Arts', 'Comics', 'Education & Reference', 'Humanities & Social Sciences', 'Science & Technology', 'Kids', 'Sports') NOT NULL,
`published_at` datetime NOT NULL,
`stock` int(11) DEFAULT '0',
`price` decimal(15,2) DEFAULT '0.0',
PRIMARY KEY (`id`) CLUSTERED
) DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin;
To support the searching by year feature, you need to write a SQL statement to search for all books published in a given year. Taking 2022 as an example, write a SQL statement as follows:
SELECT * FROM `bookshop`.`books` WHERE `published_at` >= '2022-01-01 00:00:00' AND `published_at` < '2023-01-01 00:00:00';
To check the execution plan of the SQL statement, you can use the EXPLAIN statement.
EXPLAIN SELECT * FROM `bookshop`.`books` WHERE `published_at` >= '2022-01-01 00:00:00' AND `published_at` < '2023-01-01 00:00:00';
The following is an example output of the execution plan:
+-------------------------+----------+-----------+---------------+--------------------------------------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+-------------------------+----------+-----------+---------------+--------------------------------------------------------------------------------------------------------------------------+
| TableReader_7 | 346.32 | root | | data:Selection_6 |
| └─Selection_6 | 346.32 | cop[tikv] | | ge(bookshop.books.published_at, 2022-01-01 00:00:00.000000), lt(bookshop.books.published_at, 2023-01-01 00:00:00.000000) |
| └─TableFullScan_5 | 20000.00 | cop[tikv] | table:books | keep order:false |
+-------------------------+----------+-----------+---------------+--------------------------------------------------------------------------------------------------------------------------+
3 rows in set (0.61 sec)
In the example output, TableFullScan is displayed in the id column, which means that TiDB is ready to do a full table scan on the books table in this query. In the case of a large amount of data, however, a full table scan might be quite slow and cause a fatal impact.
To avoid such impact, you can add an index for the published_at column to the books table as follows:
CREATE INDEX `idx_book_published_at` ON `bookshop`.`books` (`bookshop`.`books`.`published_at`);
After adding the index, execute the EXPLAIN statement again to check the execution plan.
The following is an example output.
+-------------------------------+---------+-----------+--------------------------------------------------------+-------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+-------------------------------+---------+-----------+--------------------------------------------------------+-------------------------------------------------------------------+
| IndexLookUp_10 | 146.01 | root | | |
| ├─IndexRangeScan_8(Build) | 146.01 | cop[tikv] | table:books, index:idx_book_published_at(published_at) | range:[2022-01-01 00:00:00,2023-01-01 00:00:00), keep order:false |
| └─TableRowIDScan_9(Probe) | 146.01 | cop[tikv] | table:books | keep order:false |
+-------------------------------+---------+-----------+--------------------------------------------------------+-------------------------------------------------------------------+
3 rows in set (0.18 sec)
In the output, IndexRangeScan is displayed instead of TableFullScan, which means that TiDB is ready to use indexes to do this query.
The words such as TableFullScan and IndexRangeScan in the execution plan are operators in TiDB. For more information about execution plans and operators, see TiDB Query Execution Plan Overview.
The execution plan does not return the same operator every time. This is because TiDB uses a Cost-Based Optimization (CBO) approach, in which an execution plan depends on both rules and data distribution. For more information about TiDB SQL performance, see SQL Tuning Overview.
The execution plan does not return the same operator every time. This is because TiDB uses a Cost-Based Optimization (CBO) approach, in which an execution plan depends on both rules and data distribution. For more information about TiDB SQL performance, see SQL Tuning Overview.
TiDB also supports explicit use of indexes when querying, and you can use Optimizer Hints or SQL Plan Management (SPM) to artificially control the use of indexes. But if you do not know well about indexes, optimizer hints, or SPM, DO NOT use this feature to avoid any unexpected results.
To query the indexes on a table, you can use the SHOW INDEXES statement:
SHOW INDEXES FROM `bookshop`.`books`;
The following is an example output:
+-------+------------+-----------------------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+-----------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression | Clustered |
+-------+------------+-----------------------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+-----------+
| books | 0 | PRIMARY | 1 | id | A | 0 | NULL | NULL | | BTREE | | | YES | NULL | YES |
| books | 1 | idx_book_published_at | 1 | published_at | A | 0 | NULL | NULL | | BTREE | | | YES | NULL | NO |
+-------+------------+-----------------------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+-----------+
2 rows in set (1.63 sec)
Next step
After creating a database and adding tables and secondary indexes to it, you can start adding the data write and read features to your application.