- Docs Home
- About TiDB Cloud
- Get Started
- Develop Applications
- Overview
- Quick Start
- Build a TiDB Developer Cluster
- CRUD SQL in TiDB
- Build a Simple CRUD App with TiDB
- Example Applications
- Connect to TiDB
- Design Database Schema
- Write Data
- Read Data
- Transaction
- Optimize
- Troubleshoot
- Reference
- Cloud Native Development Environment
- Manage Cluster
- Plan Your Cluster
- Create a TiDB Cluster
- Connect to Your TiDB Cluster
- Set Up VPC Peering Connections
- Use an HTAP Cluster with TiFlash
- Scale a TiDB Cluster
- Upgrade a TiDB Cluster
- Delete a TiDB Cluster
- Use TiDB Cloud API (Beta)
- Migrate Data
- Import Sample Data
- Migrate Data into TiDB
- Configure Amazon S3 Access and GCS Access
- Migrate from MySQL-Compatible Databases
- Migrate Incremental Data from MySQL-Compatible Databases
- Migrate from Amazon Aurora MySQL in Bulk
- Import or Migrate from Amazon S3 or GCS to TiDB Cloud
- Import CSV Files from Amazon S3 or GCS into TiDB Cloud
- Import Apache Parquet Files from Amazon S3 or GCS into TiDB Cloud
- Troubleshoot Access Denied Errors during Data Import from Amazon S3
- Export Data from TiDB
- Back Up and Restore
- Monitor and Alert
- Overview
- Built-in Monitoring
- Built-in Alerting
- Third-Party Monitoring Integrations
- Tune Performance
- Overview
- Analyze Performance
- SQL Tuning
- Overview
- Understanding the Query Execution Plan
- SQL Optimization Process
- Overview
- Logic Optimization
- Physical Optimization
- Prepare Execution Plan Cache
- Control Execution Plans
- TiKV Follower Read
- Coprocessor Cache
- Garbage Collection (GC)
- Tune TiFlash performance
- Manage User Access
- Billing
- Reference
- TiDB Cluster Architecture
- TiDB Cloud Cluster Limits and Quotas
- TiDB Limitations
- SQL
- Explore SQL with TiDB
- SQL Language Structure and Syntax
- SQL Statements
ADD COLUMN
ADD INDEX
ADMIN
ADMIN CANCEL DDL
ADMIN CHECKSUM TABLE
ADMIN CHECK [TABLE|INDEX]
ADMIN SHOW DDL [JOBS|QUERIES]
ALTER DATABASE
ALTER INDEX
ALTER TABLE
ALTER TABLE COMPACT
ALTER USER
ANALYZE TABLE
BATCH
BEGIN
CHANGE COLUMN
COMMIT
CHANGE DRAINER
CHANGE PUMP
CREATE [GLOBAL|SESSION] BINDING
CREATE DATABASE
CREATE INDEX
CREATE ROLE
CREATE SEQUENCE
CREATE TABLE LIKE
CREATE TABLE
CREATE USER
CREATE VIEW
DEALLOCATE
DELETE
DESC
DESCRIBE
DO
DROP [GLOBAL|SESSION] BINDING
DROP COLUMN
DROP DATABASE
DROP INDEX
DROP ROLE
DROP SEQUENCE
DROP STATS
DROP TABLE
DROP USER
DROP VIEW
EXECUTE
EXPLAIN ANALYZE
EXPLAIN
FLASHBACK TABLE
FLUSH PRIVILEGES
FLUSH STATUS
FLUSH TABLES
GRANT <privileges>
GRANT <role>
INSERT
KILL [TIDB]
MODIFY COLUMN
PREPARE
RECOVER TABLE
RENAME INDEX
RENAME TABLE
REPLACE
REVOKE <privileges>
REVOKE <role>
ROLLBACK
SELECT
SET DEFAULT ROLE
SET [NAMES|CHARACTER SET]
SET PASSWORD
SET ROLE
SET TRANSACTION
SET [GLOBAL|SESSION] <variable>
SHOW ANALYZE STATUS
SHOW [GLOBAL|SESSION] BINDINGS
SHOW BUILTINS
SHOW CHARACTER SET
SHOW COLLATION
SHOW [FULL] COLUMNS FROM
SHOW CREATE SEQUENCE
SHOW CREATE TABLE
SHOW CREATE USER
SHOW DATABASES
SHOW DRAINER STATUS
SHOW ENGINES
SHOW ERRORS
SHOW [FULL] FIELDS FROM
SHOW GRANTS
SHOW INDEX [FROM|IN]
SHOW INDEXES [FROM|IN]
SHOW KEYS [FROM|IN]
SHOW MASTER STATUS
SHOW PLUGINS
SHOW PRIVILEGES
SHOW [FULL] PROCESSSLIST
SHOW PROFILES
SHOW PUMP STATUS
SHOW SCHEMAS
SHOW STATS_HEALTHY
SHOW STATS_HISTOGRAMS
SHOW STATS_META
SHOW STATUS
SHOW TABLE NEXT_ROW_ID
SHOW TABLE REGIONS
SHOW TABLE STATUS
SHOW [FULL] TABLES
SHOW [GLOBAL|SESSION] VARIABLES
SHOW WARNINGS
SHUTDOWN
SPLIT REGION
START TRANSACTION
TABLE
TRACE
TRUNCATE
UPDATE
USE
WITH
- Data Types
- Functions and Operators
- Overview
- Type Conversion in Expression Evaluation
- Operators
- Control Flow Functions
- String Functions
- Numeric Functions and Operators
- Date and Time Functions
- Bit Functions and Operators
- Cast Functions and Operators
- Encryption and Compression Functions
- Locking Functions
- Information Functions
- JSON Functions
- Aggregate (GROUP BY) Functions
- Window Functions
- Miscellaneous Functions
- Precision Math
- Set Operations
- List of Expressions for Pushdown
- TiDB Specific Functions
- Clustered Indexes
- Constraints
- Generated Columns
- SQL Mode
- Table Attributes
- Transactions
- Views
- Partitioning
- Temporary Tables
- Cached Tables
- Character Set and Collation
- Read Historical Data
- System Tables
mysql
- INFORMATION_SCHEMA
- Overview
ANALYZE_STATUS
CLIENT_ERRORS_SUMMARY_BY_HOST
CLIENT_ERRORS_SUMMARY_BY_USER
CLIENT_ERRORS_SUMMARY_GLOBAL
CHARACTER_SETS
CLUSTER_INFO
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
DATA_LOCK_WAITS
DDL_JOBS
DEADLOCKS
ENGINES
KEY_COLUMN_USAGE
PARTITIONS
PROCESSLIST
REFERENTIAL_CONSTRAINTS
SCHEMATA
SEQUENCES
SESSION_VARIABLES
SLOW_QUERY
STATISTICS
TABLES
TABLE_CONSTRAINTS
TABLE_STORAGE_STATS
TIDB_HOT_REGIONS_HISTORY
TIDB_INDEXES
TIDB_SERVERS_INFO
TIDB_TRX
TIFLASH_REPLICA
TIKV_REGION_PEERS
TIKV_REGION_STATUS
TIKV_STORE_STATUS
USER_PRIVILEGES
VIEWS
- System Variables
- API Reference
- Storage Engines
- Dumpling
- Table Filter
- Troubleshoot Inconsistency Between Data and Indexes
- FAQs
- Release Notes
- Support
- Glossary
Usage Scenarios of Stale Read
This document describes the usage scenarios of Stale Read. Stale Read is a mechanism that TiDB applies to read historical versions of data stored in TiDB. Using this mechanism, you can read the corresponding historical data of a specific point in time or within a specified time range, and thus save the latency brought by data replication between storage nodes.
When you are using Stale Read, TiDB will randomly select a replica for data reading, which means that all replicas are available for data reading. If your application cannot tolerate reading non-real-time data, do not use Stale Read; otherwise, the data read from the replica might not be the latest data written into TiDB.
Scenario examples
Scenario one: If a transaction only involves read operations and is tolerant of data staleness to some extent, you can use Stale Read to get historical data. Using Stale Read, TiDB makes the query requests sent to any replica at the expense of some real-time performance, and thus increases the throughput of query executions. Especially in some scenarios where small tables are queried, if strongly consistent reads are used, leader might be concentrated on a certain storage node, causing the query pressure to be concentrated on that node as well. Therefore, that node might become a bottleneck for the whole query. Stale Read, however, can improve the overall query throughput and significantly improve the query performance.
Scenario two: In some scenarios of geo-distributed deployment, if strongly consistent follower reads are used, to make sure that the data read from the Followers is consistent with that stored in the Leader, TiDB requests
Readindex
from different data centers for verification, which increases the access latency for the whole query process. With Stale Read, TiDB accesses the replica in the current data center to read the corresponding data at the expense of some real-time performance, which avoids network latency brought by cross-center connection and reduces the access latency for the entire query. For more information, see Local Read under Three Data Centers Deployment.
If a transaction only involves read operations and is tolerant of data staleness to some extent, you can use Stale Read to get historical data. Using Stale Read, TiDB makes the query requests sent to any replica at the expense of some real-time performance, and thus increases the throughput of query executions. Especially in some scenarios where small tables are queried, if strongly consistent reads are used, leader might be concentrated on a certain storage node, causing the query pressure to be concentrated on that node as well. Therefore, that node might become a bottleneck for the whole query. Stale Read, however, can improve the overall query throughput and significantly improve the query performance.
Usages
TiDB provides the methods of performing Stale Read at the statement level and the session level as follows:
- Statement level
- Specifying an exact point in time (recommended): If you need TiDB to read data that is globally consistent from a specific point in time without violating the isolation level, you can specify the corresponding timestamp of that point in time in the query statement. For detailed usage, see
AS OF TIMESTAMP
clause. - Specifying a time range: If you need TiDB to read the data as new as possible within a time range without violating the isolation level, you can specify the time range in the query statement. Within the specified time range, TiDB selects a suitable timestamp to read the corresponding data. "Suitable" means there are no transactions that start before this timestamp and have not been committed on the accessed replica, that is, TiDB can perform read operations on the accessed replica and the read operations are not blocked. For detailed usage, refer to the introduction of the
AS OF TIMESTAMP
Clause and theTIDB_BOUNDED_STALENESS
function.
- Specifying an exact point in time (recommended): If you need TiDB to read data that is globally consistent from a specific point in time without violating the isolation level, you can specify the corresponding timestamp of that point in time in the query statement. For detailed usage, see
- Session level
- Specifying a time range: In a session, if you need TiDB to read the data as new as possible within a time range in subsequent queries without violating the isolation level, you can specify the time range by setting the
tidb_read_staleness
system variable. For detailed usage, refer totidb_read_staleness
.
- Specifying a time range: In a session, if you need TiDB to read the data as new as possible within a time range in subsequent queries without violating the isolation level, you can specify the time range by setting the