- Docs Home
- About TiDB Cloud
- Get Started
- Develop Applications
- Overview
- Quick Start
- Build a TiDB Developer Cluster
- CRUD SQL in TiDB
- Build a Simple CRUD App with TiDB
- Example Applications
- Connect to TiDB
- Design Database Schema
- Write Data
- Read Data
- Transaction
- Optimize
- Troubleshoot
- Reference
- Cloud Native Development Environment
- Manage Cluster
- Plan Your Cluster
- Create a TiDB Cluster
- Connect to Your TiDB Cluster
- Set Up VPC Peering Connections
- Use an HTAP Cluster with TiFlash
- Scale a TiDB Cluster
- Upgrade a TiDB Cluster
- Delete a TiDB Cluster
- Use TiDB Cloud API (Beta)
- Migrate Data
- Import Sample Data
- Migrate Data into TiDB
- Configure Amazon S3 Access and GCS Access
- Migrate from MySQL-Compatible Databases
- Migrate Incremental Data from MySQL-Compatible Databases
- Migrate from Amazon Aurora MySQL in Bulk
- Import or Migrate from Amazon S3 or GCS to TiDB Cloud
- Import CSV Files from Amazon S3 or GCS into TiDB Cloud
- Import Apache Parquet Files from Amazon S3 or GCS into TiDB Cloud
- Troubleshoot Access Denied Errors during Data Import from Amazon S3
- Export Data from TiDB
- Back Up and Restore
- Monitor and Alert
- Overview
- Built-in Monitoring
- Built-in Alerting
- Third-Party Monitoring Integrations
- Tune Performance
- Overview
- Analyze Performance
- SQL Tuning
- Overview
- Understanding the Query Execution Plan
- SQL Optimization Process
- Overview
- Logic Optimization
- Physical Optimization
- Prepare Execution Plan Cache
- Control Execution Plans
- TiKV Follower Read
- Coprocessor Cache
- Garbage Collection (GC)
- Tune TiFlash performance
- Manage User Access
- Billing
- Reference
- TiDB Cluster Architecture
- TiDB Cloud Cluster Limits and Quotas
- TiDB Limitations
- SQL
- Explore SQL with TiDB
- SQL Language Structure and Syntax
- SQL Statements
ADD COLUMN
ADD INDEX
ADMIN
ADMIN CANCEL DDL
ADMIN CHECKSUM TABLE
ADMIN CHECK [TABLE|INDEX]
ADMIN SHOW DDL [JOBS|QUERIES]
ALTER DATABASE
ALTER INDEX
ALTER TABLE
ALTER TABLE COMPACT
ALTER USER
ANALYZE TABLE
BATCH
BEGIN
CHANGE COLUMN
COMMIT
CHANGE DRAINER
CHANGE PUMP
CREATE [GLOBAL|SESSION] BINDING
CREATE DATABASE
CREATE INDEX
CREATE ROLE
CREATE SEQUENCE
CREATE TABLE LIKE
CREATE TABLE
CREATE USER
CREATE VIEW
DEALLOCATE
DELETE
DESC
DESCRIBE
DO
DROP [GLOBAL|SESSION] BINDING
DROP COLUMN
DROP DATABASE
DROP INDEX
DROP ROLE
DROP SEQUENCE
DROP STATS
DROP TABLE
DROP USER
DROP VIEW
EXECUTE
EXPLAIN ANALYZE
EXPLAIN
FLASHBACK TABLE
FLUSH PRIVILEGES
FLUSH STATUS
FLUSH TABLES
GRANT <privileges>
GRANT <role>
INSERT
KILL [TIDB]
MODIFY COLUMN
PREPARE
RECOVER TABLE
RENAME INDEX
RENAME TABLE
REPLACE
REVOKE <privileges>
REVOKE <role>
ROLLBACK
SELECT
SET DEFAULT ROLE
SET [NAMES|CHARACTER SET]
SET PASSWORD
SET ROLE
SET TRANSACTION
SET [GLOBAL|SESSION] <variable>
SHOW ANALYZE STATUS
SHOW [GLOBAL|SESSION] BINDINGS
SHOW BUILTINS
SHOW CHARACTER SET
SHOW COLLATION
SHOW [FULL] COLUMNS FROM
SHOW CREATE SEQUENCE
SHOW CREATE TABLE
SHOW CREATE USER
SHOW DATABASES
SHOW DRAINER STATUS
SHOW ENGINES
SHOW ERRORS
SHOW [FULL] FIELDS FROM
SHOW GRANTS
SHOW INDEX [FROM|IN]
SHOW INDEXES [FROM|IN]
SHOW KEYS [FROM|IN]
SHOW MASTER STATUS
SHOW PLUGINS
SHOW PRIVILEGES
SHOW [FULL] PROCESSSLIST
SHOW PROFILES
SHOW PUMP STATUS
SHOW SCHEMAS
SHOW STATS_HEALTHY
SHOW STATS_HISTOGRAMS
SHOW STATS_META
SHOW STATUS
SHOW TABLE NEXT_ROW_ID
SHOW TABLE REGIONS
SHOW TABLE STATUS
SHOW [FULL] TABLES
SHOW [GLOBAL|SESSION] VARIABLES
SHOW WARNINGS
SHUTDOWN
SPLIT REGION
START TRANSACTION
TABLE
TRACE
TRUNCATE
UPDATE
USE
WITH
- Data Types
- Functions and Operators
- Overview
- Type Conversion in Expression Evaluation
- Operators
- Control Flow Functions
- String Functions
- Numeric Functions and Operators
- Date and Time Functions
- Bit Functions and Operators
- Cast Functions and Operators
- Encryption and Compression Functions
- Locking Functions
- Information Functions
- JSON Functions
- Aggregate (GROUP BY) Functions
- Window Functions
- Miscellaneous Functions
- Precision Math
- Set Operations
- List of Expressions for Pushdown
- TiDB Specific Functions
- Clustered Indexes
- Constraints
- Generated Columns
- SQL Mode
- Table Attributes
- Transactions
- Views
- Partitioning
- Temporary Tables
- Cached Tables
- Character Set and Collation
- Read Historical Data
- System Tables
mysql
- INFORMATION_SCHEMA
- Overview
ANALYZE_STATUS
CLIENT_ERRORS_SUMMARY_BY_HOST
CLIENT_ERRORS_SUMMARY_BY_USER
CLIENT_ERRORS_SUMMARY_GLOBAL
CHARACTER_SETS
CLUSTER_INFO
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
DATA_LOCK_WAITS
DDL_JOBS
DEADLOCKS
ENGINES
KEY_COLUMN_USAGE
PARTITIONS
PROCESSLIST
REFERENTIAL_CONSTRAINTS
SCHEMATA
SEQUENCES
SESSION_VARIABLES
SLOW_QUERY
STATISTICS
TABLES
TABLE_CONSTRAINTS
TABLE_STORAGE_STATS
TIDB_HOT_REGIONS_HISTORY
TIDB_INDEXES
TIDB_SERVERS_INFO
TIDB_TRX
TIFLASH_REPLICA
TIKV_REGION_PEERS
TIKV_REGION_STATUS
TIKV_STORE_STATUS
USER_PRIVILEGES
VIEWS
- System Variables
- API Reference
- Storage Engines
- Dumpling
- Table Filter
- Troubleshoot Inconsistency Between Data and Indexes
- FAQs
- Release Notes
- Support
- Glossary
Explain Statements Using Aggregation
When aggregating data, the SQL Optimizer will select either a Hash Aggregation or Stream Aggregation operator. To improve query efficiency, aggregation is performed at both the coprocessor and TiDB layers. Consider the following example:
CREATE TABLE t1 (id INT NOT NULL PRIMARY KEY auto_increment, pad1 BLOB, pad2 BLOB, pad3 BLOB);
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM dual;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
SELECT SLEEP(1);
ANALYZE TABLE t1;
From the output of SHOW TABLE REGIONS
, you can see that this table is split into multiple Regions:
SHOW TABLE t1 REGIONS;
+-----------+--------------+--------------+-----------+-----------------+-------+------------+---------------+------------+----------------------+------------------+
| REGION_ID | START_KEY | END_KEY | LEADER_ID | LEADER_STORE_ID | PEERS | SCATTERING | WRITTEN_BYTES | READ_BYTES | APPROXIMATE_SIZE(MB) | APPROXIMATE_KEYS |
+-----------+--------------+--------------+-----------+-----------------+-------+------------+---------------+------------+----------------------+------------------+
| 64 | t_64_ | t_64_r_31766 | 65 | 1 | 65 | 0 | 1325 | 102033520 | 98 | 52797 |
| 66 | t_64_r_31766 | t_64_r_63531 | 67 | 1 | 67 | 0 | 1325 | 72522521 | 104 | 78495 |
| 68 | t_64_r_63531 | t_64_r_95296 | 69 | 1 | 69 | 0 | 1325 | 0 | 104 | 95433 |
| 2 | t_64_r_95296 | | 3 | 1 | 3 | 0 | 1501 | 0 | 81 | 63211 |
+-----------+--------------+--------------+-----------+-----------------+-------+------------+---------------+------------+----------------------+------------------+
4 rows in set (0.00 sec)
Using EXPLAIN
with the following aggregation statement, you can see that └─StreamAgg_8
is first performed on each Region inside TiKV. Each TiKV Region will then send one row back to TiDB, which aggregates the data from each Region in StreamAgg_16
:
EXPLAIN SELECT COUNT(*) FROM t1;
+----------------------------+-----------+-----------+---------------+---------------------------------+
| id | estRows | task | access object | operator info |
+----------------------------+-----------+-----------+---------------+---------------------------------+
| StreamAgg_16 | 1.00 | root | | funcs:count(Column#7)->Column#5 |
| └─TableReader_17 | 1.00 | root | | data:StreamAgg_8 |
| └─StreamAgg_8 | 1.00 | cop[tikv] | | funcs:count(1)->Column#7 |
| └─TableFullScan_15 | 242020.00 | cop[tikv] | table:t1 | keep order:false |
+----------------------------+-----------+-----------+---------------+---------------------------------+
4 rows in set (0.00 sec)
This is easiest to observe in EXPLAIN ANALYZE
, where the actRows
matches the number of Regions from SHOW TABLE REGIONS
because a TableFullScan
is being used and there are no secondary indexes:
EXPLAIN ANALYZE SELECT COUNT(*) FROM t1;
+----------------------------+-----------+---------+-----------+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------------------------------+-----------+------+
| id | estRows | actRows | task | access object | execution info | operator info | memory | disk |
+----------------------------+-----------+---------+-----------+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------------------------------+-----------+------+
| StreamAgg_16 | 1.00 | 1 | root | | time:12.609575ms, loops:2 | funcs:count(Column#7)->Column#5 | 372 Bytes | N/A |
| └─TableReader_17 | 1.00 | 4 | root | | time:12.605155ms, loops:2, cop_task: {num: 4, max: 12.538245ms, min: 9.256838ms, avg: 10.895114ms, p95: 12.538245ms, max_proc_keys: 31765, p95_proc_keys: 31765, tot_proc: 48ms, rpc_num: 4, rpc_time: 43.530707ms, copr_cache_hit_ratio: 0.00} | data:StreamAgg_8 | 293 Bytes | N/A |
| └─StreamAgg_8 | 1.00 | 4 | cop[tikv] | | proc max:12ms, min:12ms, p80:12ms, p95:12ms, iters:122, tasks:4 | funcs:count(1)->Column#7 | N/A | N/A |
| └─TableFullScan_15 | 242020.00 | 121010 | cop[tikv] | table:t1 | proc max:12ms, min:12ms, p80:12ms, p95:12ms, iters:122, tasks:4 | keep order:false | N/A | N/A |
+----------------------------+-----------+---------+-----------+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------------------------------+-----------+------+
4 rows in set (0.01 sec)
Hash Aggregation
The Hash Aggregation algorithm uses a hash table to store intermediate results while performing aggregation. It executes in parallel using multiple threads but consumes more memory than Stream Aggregation.
The following is an example of the HashAgg
operator:
EXPLAIN SELECT /*+ HASH_AGG() */ count(*) FROM t1;
+---------------------------+-----------+-----------+---------------+---------------------------------+
| id | estRows | task | access object | operator info |
+---------------------------+-----------+-----------+---------------+---------------------------------+
| HashAgg_9 | 1.00 | root | | funcs:count(Column#6)->Column#5 |
| └─TableReader_10 | 1.00 | root | | data:HashAgg_5 |
| └─HashAgg_5 | 1.00 | cop[tikv] | | funcs:count(1)->Column#6 |
| └─TableFullScan_8 | 242020.00 | cop[tikv] | table:t1 | keep order:false |
+---------------------------+-----------+-----------+---------------+---------------------------------+
4 rows in set (0.00 sec)
The operator info
shows that the hashing function used to aggregate the data is funcs:count(1)->Column#6
.
Stream Aggregation
The Stream Aggregation algorithm usually consumes less memory than Hash Aggregation. However, this operator requires that data is sent ordered so that it can stream and apply the aggregation on values as they arrive.
Consider the following example:
CREATE TABLE t2 (id INT NOT NULL PRIMARY KEY, col1 INT NOT NULL);
INSERT INTO t2 VALUES (1, 9),(2, 3),(3,1),(4,8),(6,3);
EXPLAIN SELECT /*+ STREAM_AGG() */ col1, count(*) FROM t2 GROUP BY col1;
Query OK, 0 rows affected (0.11 sec)
Query OK, 5 rows affected (0.01 sec)
Records: 5 Duplicates: 0 Warnings: 0
+------------------------------+----------+-----------+---------------+---------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+------------------------------+----------+-----------+---------------+---------------------------------------------------------------------------------------------+
| Projection_4 | 8000.00 | root | | test.t2.col1, Column#3 |
| └─StreamAgg_8 | 8000.00 | root | | group by:test.t2.col1, funcs:count(1)->Column#3, funcs:firstrow(test.t2.col1)->test.t2.col1 |
| └─Sort_13 | 10000.00 | root | | test.t2.col1 |
| └─TableReader_12 | 10000.00 | root | | data:TableFullScan_11 |
| └─TableFullScan_11 | 10000.00 | cop[tikv] | table:t2 | keep order:false, stats:pseudo |
+------------------------------+----------+-----------+---------------+---------------------------------------------------------------------------------------------+
5 rows in set (0.00 sec)
In this example, the └─Sort_13
operator can be eliminated by adding an index on col1
. Once the index is added, the data can be read in order and the └─Sort_13
operator is eliminated:
ALTER TABLE t2 ADD INDEX (col1);
EXPLAIN SELECT /*+ STREAM_AGG() */ col1, count(*) FROM t2 GROUP BY col1;
Query OK, 0 rows affected (0.28 sec)
+------------------------------+---------+-----------+----------------------------+----------------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+------------------------------+---------+-----------+----------------------------+----------------------------------------------------------------------------------------------------+
| Projection_4 | 4.00 | root | | test.t2.col1, Column#3 |
| └─StreamAgg_14 | 4.00 | root | | group by:test.t2.col1, funcs:count(Column#4)->Column#3, funcs:firstrow(test.t2.col1)->test.t2.col1 |
| └─IndexReader_15 | 4.00 | root | | index:StreamAgg_8 |
| └─StreamAgg_8 | 4.00 | cop[tikv] | | group by:test.t2.col1, funcs:count(1)->Column#4 |
| └─IndexFullScan_13 | 5.00 | cop[tikv] | table:t2, index:col1(col1) | keep order:true, stats:pseudo |
+------------------------------+---------+-----------+----------------------------+----------------------------------------------------------------------------------------------------+
5 rows in set (0.00 sec)