- Docs Home
- About TiDB Cloud
- Get Started
- Develop Applications
- Overview
- Quick Start
- Build a TiDB Developer Cluster
- CRUD SQL in TiDB
- Build a Simple CRUD App with TiDB
- Example Applications
- Connect to TiDB
- Design Database Schema
- Write Data
- Read Data
- Transaction
- Optimize
- Troubleshoot
- Reference
- Cloud Native Development Environment
- Manage Cluster
- Plan Your Cluster
- Create a TiDB Cluster
- Connect to Your TiDB Cluster
- Set Up VPC Peering Connections
- Use an HTAP Cluster with TiFlash
- Scale a TiDB Cluster
- Upgrade a TiDB Cluster
- Delete a TiDB Cluster
- Use TiDB Cloud API (Beta)
- Migrate Data
- Import Sample Data
- Migrate Data into TiDB
- Configure Amazon S3 Access and GCS Access
- Migrate from MySQL-Compatible Databases
- Migrate Incremental Data from MySQL-Compatible Databases
- Migrate from Amazon Aurora MySQL in Bulk
- Import or Migrate from Amazon S3 or GCS to TiDB Cloud
- Import CSV Files from Amazon S3 or GCS into TiDB Cloud
- Import Apache Parquet Files from Amazon S3 or GCS into TiDB Cloud
- Troubleshoot Access Denied Errors during Data Import from Amazon S3
- Export Data from TiDB
- Back Up and Restore
- Monitor and Alert
- Overview
- Built-in Monitoring
- Built-in Alerting
- Third-Party Monitoring Integrations
- Tune Performance
- Overview
- Analyze Performance
- SQL Tuning
- Overview
- Understanding the Query Execution Plan
- SQL Optimization Process
- Overview
- Logic Optimization
- Physical Optimization
- Prepare Execution Plan Cache
- Control Execution Plans
- TiKV Follower Read
- Coprocessor Cache
- Garbage Collection (GC)
- Tune TiFlash performance
- Manage User Access
- Billing
- Reference
- TiDB Cluster Architecture
- TiDB Cloud Cluster Limits and Quotas
- TiDB Limitations
- SQL
- Explore SQL with TiDB
- SQL Language Structure and Syntax
- SQL Statements
ADD COLUMN
ADD INDEX
ADMIN
ADMIN CANCEL DDL
ADMIN CHECKSUM TABLE
ADMIN CHECK [TABLE|INDEX]
ADMIN SHOW DDL [JOBS|QUERIES]
ALTER DATABASE
ALTER INDEX
ALTER TABLE
ALTER TABLE COMPACT
ALTER USER
ANALYZE TABLE
BATCH
BEGIN
CHANGE COLUMN
COMMIT
CHANGE DRAINER
CHANGE PUMP
CREATE [GLOBAL|SESSION] BINDING
CREATE DATABASE
CREATE INDEX
CREATE ROLE
CREATE SEQUENCE
CREATE TABLE LIKE
CREATE TABLE
CREATE USER
CREATE VIEW
DEALLOCATE
DELETE
DESC
DESCRIBE
DO
DROP [GLOBAL|SESSION] BINDING
DROP COLUMN
DROP DATABASE
DROP INDEX
DROP ROLE
DROP SEQUENCE
DROP STATS
DROP TABLE
DROP USER
DROP VIEW
EXECUTE
EXPLAIN ANALYZE
EXPLAIN
FLASHBACK TABLE
FLUSH PRIVILEGES
FLUSH STATUS
FLUSH TABLES
GRANT <privileges>
GRANT <role>
INSERT
KILL [TIDB]
MODIFY COLUMN
PREPARE
RECOVER TABLE
RENAME INDEX
RENAME TABLE
REPLACE
REVOKE <privileges>
REVOKE <role>
ROLLBACK
SELECT
SET DEFAULT ROLE
SET [NAMES|CHARACTER SET]
SET PASSWORD
SET ROLE
SET TRANSACTION
SET [GLOBAL|SESSION] <variable>
SHOW ANALYZE STATUS
SHOW [GLOBAL|SESSION] BINDINGS
SHOW BUILTINS
SHOW CHARACTER SET
SHOW COLLATION
SHOW [FULL] COLUMNS FROM
SHOW CREATE SEQUENCE
SHOW CREATE TABLE
SHOW CREATE USER
SHOW DATABASES
SHOW DRAINER STATUS
SHOW ENGINES
SHOW ERRORS
SHOW [FULL] FIELDS FROM
SHOW GRANTS
SHOW INDEX [FROM|IN]
SHOW INDEXES [FROM|IN]
SHOW KEYS [FROM|IN]
SHOW MASTER STATUS
SHOW PLUGINS
SHOW PRIVILEGES
SHOW [FULL] PROCESSSLIST
SHOW PROFILES
SHOW PUMP STATUS
SHOW SCHEMAS
SHOW STATS_HEALTHY
SHOW STATS_HISTOGRAMS
SHOW STATS_META
SHOW STATUS
SHOW TABLE NEXT_ROW_ID
SHOW TABLE REGIONS
SHOW TABLE STATUS
SHOW [FULL] TABLES
SHOW [GLOBAL|SESSION] VARIABLES
SHOW WARNINGS
SHUTDOWN
SPLIT REGION
START TRANSACTION
TABLE
TRACE
TRUNCATE
UPDATE
USE
WITH
- Data Types
- Functions and Operators
- Overview
- Type Conversion in Expression Evaluation
- Operators
- Control Flow Functions
- String Functions
- Numeric Functions and Operators
- Date and Time Functions
- Bit Functions and Operators
- Cast Functions and Operators
- Encryption and Compression Functions
- Locking Functions
- Information Functions
- JSON Functions
- Aggregate (GROUP BY) Functions
- Window Functions
- Miscellaneous Functions
- Precision Math
- Set Operations
- List of Expressions for Pushdown
- TiDB Specific Functions
- Clustered Indexes
- Constraints
- Generated Columns
- SQL Mode
- Table Attributes
- Transactions
- Views
- Partitioning
- Temporary Tables
- Cached Tables
- Character Set and Collation
- Read Historical Data
- System Tables
mysql
- INFORMATION_SCHEMA
- Overview
ANALYZE_STATUS
CLIENT_ERRORS_SUMMARY_BY_HOST
CLIENT_ERRORS_SUMMARY_BY_USER
CLIENT_ERRORS_SUMMARY_GLOBAL
CHARACTER_SETS
CLUSTER_INFO
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
DATA_LOCK_WAITS
DDL_JOBS
DEADLOCKS
ENGINES
KEY_COLUMN_USAGE
PARTITIONS
PROCESSLIST
REFERENTIAL_CONSTRAINTS
SCHEMATA
SEQUENCES
SESSION_VARIABLES
SLOW_QUERY
STATISTICS
TABLES
TABLE_CONSTRAINTS
TABLE_STORAGE_STATS
TIDB_HOT_REGIONS_HISTORY
TIDB_INDEXES
TIDB_SERVERS_INFO
TIDB_TRX
TIFLASH_REPLICA
TIKV_REGION_PEERS
TIKV_REGION_STATUS
TIKV_STORE_STATUS
USER_PRIVILEGES
VIEWS
- System Variables
- API Reference
- Storage Engines
- Dumpling
- Table Filter
- Troubleshoot Inconsistency Between Data and Indexes
- FAQs
- Release Notes
- Support
- Glossary
Partition Pruning
Partition pruning is a performance optimization that applies to partitioned tables. It analyzes the filter conditions in query statements, and eliminates (prunes) partitions from consideration when they do not contain any data that will be required. By eliminating the non-required partitions, TiDB is able to reduce the amount of data that needs to be accessed and potentially significantly improving query execution times.
The following is an example:
CREATE TABLE t1 (
id INT NOT NULL PRIMARY KEY,
pad VARCHAR(100)
)
PARTITION BY RANGE COLUMNS(id) (
PARTITION p0 VALUES LESS THAN (100),
PARTITION p1 VALUES LESS THAN (200),
PARTITION p2 VALUES LESS THAN (MAXVALUE)
);
INSERT INTO t1 VALUES (1, 'test1'),(101, 'test2'), (201, 'test3');
EXPLAIN SELECT * FROM t1 WHERE id BETWEEN 80 AND 120;
+----------------------------+---------+-----------+------------------------+------------------------------------------------+
| id | estRows | task | access object | operator info |
+----------------------------+---------+-----------+------------------------+------------------------------------------------+
| PartitionUnion_8 | 80.00 | root | | |
| ├─TableReader_10 | 40.00 | root | | data:TableRangeScan_9 |
| │ └─TableRangeScan_9 | 40.00 | cop[tikv] | table:t1, partition:p0 | range:[80,120], keep order:false, stats:pseudo |
| └─TableReader_12 | 40.00 | root | | data:TableRangeScan_11 |
| └─TableRangeScan_11 | 40.00 | cop[tikv] | table:t1, partition:p1 | range:[80,120], keep order:false, stats:pseudo |
+----------------------------+---------+-----------+------------------------+------------------------------------------------+
5 rows in set (0.00 sec)
Usage scenarios of partition pruning
The usage scenarios of partition pruning are different for the two types of partitioned tables: Range partitioned tables and Hash partitioned tables.
Use partition pruning in Hash partitioned tables
This section describes the applicable and inapplicable usage scenarios of partition pruning in Hash partitioned tables.
Applicable scenario in Hash partitioned tables
Partition pruning applies only to the query condition of equality comparison in Hash partitioned tables.
create table t (x int) partition by hash(x) partitions 4;
explain select * from t where x = 1;
+-------------------------+----------+-----------+-----------------------+--------------------------------+
| id | estRows | task | access object | operator info |
+-------------------------+----------+-----------+-----------------------+--------------------------------+
| TableReader_8 | 10.00 | root | | data:Selection_7 |
| └─Selection_7 | 10.00 | cop[tikv] | | eq(test.t.x, 1) |
| └─TableFullScan_6 | 10000.00 | cop[tikv] | table:t, partition:p1 | keep order:false, stats:pseudo |
+-------------------------+----------+-----------+-----------------------+--------------------------------+
In the SQL statement above, it can be known from the condition x = 1
that all results fall in one partition. The value 1
can be confirmed to be in the p1
partition after passing through the Hash partition. Therefore, only the p1
partition needs to be scanned, and there is no need to access the p2
, p3
, and p4
partitions that will not have matching results. From the execution plan, only one TableFullScan
operator appears and the p1
partition is specified in access object
, so it can be confirmed that partition pruning
takes effect.
Inapplicable scenarios in Hash partitioned tables
This section describes two inapplicable usage scenarios of partition pruning in Hash partitioned tables.
Scenario one
If you cannot confirm the condition that the query result falls in only one partition (such as in
, between
, >
, <
, >=
, <=
), you cannot use the partition pruning optimization. For example:
create table t (x int) partition by hash(x) partitions 4;
explain select * from t where x > 2;
+------------------------------+----------+-----------+-----------------------+--------------------------------+
| id | estRows | task | access object | operator info |
+------------------------------+----------+-----------+-----------------------+--------------------------------+
| Union_10 | 13333.33 | root | | |
| ├─TableReader_13 | 3333.33 | root | | data:Selection_12 |
| │ └─Selection_12 | 3333.33 | cop[tikv] | | gt(test.t.x, 2) |
| │ └─TableFullScan_11 | 10000.00 | cop[tikv] | table:t, partition:p0 | keep order:false, stats:pseudo |
| ├─TableReader_16 | 3333.33 | root | | data:Selection_15 |
| │ └─Selection_15 | 3333.33 | cop[tikv] | | gt(test.t.x, 2) |
| │ └─TableFullScan_14 | 10000.00 | cop[tikv] | table:t, partition:p1 | keep order:false, stats:pseudo |
| ├─TableReader_19 | 3333.33 | root | | data:Selection_18 |
| │ └─Selection_18 | 3333.33 | cop[tikv] | | gt(test.t.x, 2) |
| │ └─TableFullScan_17 | 10000.00 | cop[tikv] | table:t, partition:p2 | keep order:false, stats:pseudo |
| └─TableReader_22 | 3333.33 | root | | data:Selection_21 |
| └─Selection_21 | 3333.33 | cop[tikv] | | gt(test.t.x, 2) |
| └─TableFullScan_20 | 10000.00 | cop[tikv] | table:t, partition:p3 | keep order:false, stats:pseudo |
+------------------------------+----------+-----------+-----------------------+--------------------------------+
In this case, partition pruning is inapplicable because the corresponding Hash partition cannot be confirmed by the x > 2
condition.
Scenario two
Because the rule optimization of partition pruning is performed during the generation phase of the query plan, partition pruning is not suitable for scenarios where the filter conditions can be obtained only during the execution phase. For example:
create table t (x int) partition by hash(x) partitions 4;
explain select * from t2 where x = (select * from t1 where t2.x = t1.x and t2.x < 2);
+--------------------------------------+----------+-----------+------------------------+----------------------------------------------+
| id | estRows | task | access object | operator info |
+--------------------------------------+----------+-----------+------------------------+----------------------------------------------+
| Projection_13 | 9990.00 | root | | test.t2.x |
| └─Apply_15 | 9990.00 | root | | inner join, equal:[eq(test.t2.x, test.t1.x)] |
| ├─TableReader_18(Build) | 9990.00 | root | | data:Selection_17 |
| │ └─Selection_17 | 9990.00 | cop[tikv] | | not(isnull(test.t2.x)) |
| │ └─TableFullScan_16 | 10000.00 | cop[tikv] | table:t2 | keep order:false, stats:pseudo |
| └─Selection_19(Probe) | 0.80 | root | | not(isnull(test.t1.x)) |
| └─MaxOneRow_20 | 1.00 | root | | |
| └─Union_21 | 2.00 | root | | |
| ├─TableReader_24 | 2.00 | root | | data:Selection_23 |
| │ └─Selection_23 | 2.00 | cop[tikv] | | eq(test.t2.x, test.t1.x), lt(test.t2.x, 2) |
| │ └─TableFullScan_22 | 2500.00 | cop[tikv] | table:t1, partition:p0 | keep order:false, stats:pseudo |
| └─TableReader_27 | 2.00 | root | | data:Selection_26 |
| └─Selection_26 | 2.00 | cop[tikv] | | eq(test.t2.x, test.t1.x), lt(test.t2.x, 2) |
| └─TableFullScan_25 | 2500.00 | cop[tikv] | table:t1, partition:p1 | keep order:false, stats:pseudo |
+--------------------------------------+----------+-----------+------------------------+----------------------------------------------+
Each time this query reads a row from t2
, it will query on the t1
partitioned table. Theoretically, the filter condition of t1.x = val
is met at this time, but in fact, partition pruning takes effect only in the generation phase of the query plan, not the execution phase.
Use partition pruning in Range partitioned tables
This section describes the applicable and inapplicable usage scenarios of partition pruning in Range partitioned tables.
Applicable scenarios in Range partitioned tables
This section describes three applicable usage scenarios of partition pruning in Range partitioned tables.
Scenario one
Partition pruning applies to the query condition of equality comparison in Range partitioned tables. For example:
create table t (x int) partition by range (x) (
partition p0 values less than (5),
partition p1 values less than (10),
partition p2 values less than (15)
);
explain select * from t where x = 3;
+-------------------------+----------+-----------+-----------------------+--------------------------------+
| id | estRows | task | access object | operator info |
+-------------------------+----------+-----------+-----------------------+--------------------------------+
| TableReader_8 | 10.00 | root | | data:Selection_7 |
| └─Selection_7 | 10.00 | cop[tikv] | | eq(test.t.x, 3) |
| └─TableFullScan_6 | 10000.00 | cop[tikv] | table:t, partition:p0 | keep order:false, stats:pseudo |
+-------------------------+----------+-----------+-----------------------+--------------------------------+
Partition pruning also applies to the equality comparison that uses the in
query condition. For example:
create table t (x int) partition by range (x) (
partition p0 values less than (5),
partition p1 values less than (10),
partition p2 values less than (15)
);
explain select * from t where x in(1,13);
+-----------------------------+----------+-----------+-----------------------+--------------------------------+
| id | estRows | task | access object | operator info |
+-----------------------------+----------+-----------+-----------------------+--------------------------------+
| Union_8 | 40.00 | root | | |
| ├─TableReader_11 | 20.00 | root | | data:Selection_10 |
| │ └─Selection_10 | 20.00 | cop[tikv] | | in(test.t.x, 1, 13) |
| │ └─TableFullScan_9 | 10000.00 | cop[tikv] | table:t, partition:p0 | keep order:false, stats:pseudo |
| └─TableReader_14 | 20.00 | root | | data:Selection_13 |
| └─Selection_13 | 20.00 | cop[tikv] | | in(test.t.x, 1, 13) |
| └─TableFullScan_12 | 10000.00 | cop[tikv] | table:t, partition:p2 | keep order:false, stats:pseudo |
+-----------------------------+----------+-----------+-----------------------+--------------------------------+
In the SQL statement above, it can be known from the x in(1,13)
condition that all results fall in a few partitions. After analysis, it is found that all records of x = 1
are in the p0
partition, and all records of x = 13
are in the p2
partition, so only p0
and p2
partitions need to be accessed.
Scenario two
Partition pruning applies to the query condition of interval comparison, such as between
, >
, <
, =
, >=
, <=
. For example:
create table t (x int) partition by range (x) (
partition p0 values less than (5),
partition p1 values less than (10),
partition p2 values less than (15)
);
explain select * from t where x between 7 and 14;
+-----------------------------+----------+-----------+-----------------------+-----------------------------------+
| id | estRows | task | access object | operator info |
+-----------------------------+----------+-----------+-----------------------+-----------------------------------+
| Union_8 | 500.00 | root | | |
| ├─TableReader_11 | 250.00 | root | | data:Selection_10 |
| │ └─Selection_10 | 250.00 | cop[tikv] | | ge(test.t.x, 7), le(test.t.x, 14) |
| │ └─TableFullScan_9 | 10000.00 | cop[tikv] | table:t, partition:p1 | keep order:false, stats:pseudo |
| └─TableReader_14 | 250.00 | root | | data:Selection_13 |
| └─Selection_13 | 250.00 | cop[tikv] | | ge(test.t.x, 7), le(test.t.x, 14) |
| └─TableFullScan_12 | 10000.00 | cop[tikv] | table:t, partition:p2 | keep order:false, stats:pseudo |
+-----------------------------+----------+-----------+-----------------------+-----------------------------------+
Scenario three
Partition pruning applies to the scenario where the partition expression is in the simple form of fn(col)
, the query condition is one of >
, <
, =
, >=
, and <=
, and the fn
function is monotonous.
If the fn
function is monotonous, for any x
and y
, if x > y
, then fn(x) > fn(y)
. Then this fn
function can be called strictly monotonous. For any x
and y
, if x > y
, then fn(x) >= fn(y)
. In this case, fn
could also be called "monotonous". Theoretically, all monotonous functions, strictly or not, are supported by partition pruning. Currently, TiDB only supports the following monotonous functions:
unix_timestamp
to_days
For example, partition pruning takes effect when the partition expression is in the form of fn(col)
, where the fn
is monotonous function to_days
:
create table t (id datetime) partition by range (to_days(id)) (
partition p0 values less than (to_days('2020-04-01')),
partition p1 values less than (to_days('2020-05-01')));
explain select * from t where id > '2020-04-18';
+-------------------------+----------+-----------+-----------------------+-------------------------------------------+
| id | estRows | task | access object | operator info |
+-------------------------+----------+-----------+-----------------------+-------------------------------------------+
| TableReader_8 | 3333.33 | root | | data:Selection_7 |
| └─Selection_7 | 3333.33 | cop[tikv] | | gt(test.t.id, 2020-04-18 00:00:00.000000) |
| └─TableFullScan_6 | 10000.00 | cop[tikv] | table:t, partition:p1 | keep order:false, stats:pseudo |
+-------------------------+----------+-----------+-----------------------+-------------------------------------------+
Inapplicable scenario in Range partitioned tables
Because the rule optimization of partition pruning is performed during the generation phase of the query plan, partition pruning is not suitable for scenarios where the filter conditions can be obtained only during the execution phase. For example:
create table t1 (x int) partition by range (x) (
partition p0 values less than (5),
partition p1 values less than (10));
create table t2 (x int);
explain select * from t2 where x < (select * from t1 where t2.x < t1.x and t2.x < 2);
+--------------------------------------+----------+-----------+------------------------+-----------------------------------------------------------+
| id | estRows | task | access object | operator info |
+--------------------------------------+----------+-----------+------------------------+-----------------------------------------------------------+
| Projection_13 | 9990.00 | root | | test.t2.x |
| └─Apply_15 | 9990.00 | root | | CARTESIAN inner join, other cond:lt(test.t2.x, test.t1.x) |
| ├─TableReader_18(Build) | 9990.00 | root | | data:Selection_17 |
| │ └─Selection_17 | 9990.00 | cop[tikv] | | not(isnull(test.t2.x)) |
| │ └─TableFullScan_16 | 10000.00 | cop[tikv] | table:t2 | keep order:false, stats:pseudo |
| └─Selection_19(Probe) | 0.80 | root | | not(isnull(test.t1.x)) |
| └─MaxOneRow_20 | 1.00 | root | | |
| └─Union_21 | 2.00 | root | | |
| ├─TableReader_24 | 2.00 | root | | data:Selection_23 |
| │ └─Selection_23 | 2.00 | cop[tikv] | | lt(test.t2.x, 2), lt(test.t2.x, test.t1.x) |
| │ └─TableFullScan_22 | 2.50 | cop[tikv] | table:t1, partition:p0 | keep order:false, stats:pseudo |
| └─TableReader_27 | 2.00 | root | | data:Selection_26 |
| └─Selection_26 | 2.00 | cop[tikv] | | lt(test.t2.x, 2), lt(test.t2.x, test.t1.x) |
| └─TableFullScan_25 | 2.50 | cop[tikv] | table:t1, partition:p1 | keep order:false, stats:pseudo |
+--------------------------------------+----------+-----------+------------------------+-----------------------------------------------------------+
14 rows in set (0.00 sec)
Each time this query reads a row from t2
, it will query on the t1
partitioned table. Theoretically, the t1.x> val
filter condition is met at this time, but in fact, partition pruning takes effect only in the generation phase of the query plan, not the execution phase.