- Docs Home
- About TiDB Cloud
- Get Started
- Develop Applications
- Overview
- Quick Start
- Build a TiDB Developer Cluster
- CRUD SQL in TiDB
- Build a Simple CRUD App with TiDB
- Example Applications
- Connect to TiDB
- Design Database Schema
- Write Data
- Read Data
- Transaction
- Optimize
- Troubleshoot
- Reference
- Cloud Native Development Environment
- Manage Cluster
- Plan Your Cluster
- Create a TiDB Cluster
- Connect to Your TiDB Cluster
- Set Up VPC Peering Connections
- Use an HTAP Cluster with TiFlash
- Scale a TiDB Cluster
- Upgrade a TiDB Cluster
- Delete a TiDB Cluster
- Use TiDB Cloud API (Beta)
- Migrate Data
- Import Sample Data
- Migrate Data into TiDB
- Configure Amazon S3 Access and GCS Access
- Migrate from MySQL-Compatible Databases
- Migrate Incremental Data from MySQL-Compatible Databases
- Migrate from Amazon Aurora MySQL in Bulk
- Import or Migrate from Amazon S3 or GCS to TiDB Cloud
- Import CSV Files from Amazon S3 or GCS into TiDB Cloud
- Import Apache Parquet Files from Amazon S3 or GCS into TiDB Cloud
- Troubleshoot Access Denied Errors during Data Import from Amazon S3
- Export Data from TiDB
- Back Up and Restore
- Monitor and Alert
- Overview
- Built-in Monitoring
- Built-in Alerting
- Third-Party Monitoring Integrations
- Tune Performance
- Overview
- Analyze Performance
- SQL Tuning
- Overview
- Understanding the Query Execution Plan
- SQL Optimization Process
- Overview
- Logic Optimization
- Physical Optimization
- Prepare Execution Plan Cache
- Control Execution Plans
- TiKV Follower Read
- Coprocessor Cache
- Garbage Collection (GC)
- Tune TiFlash performance
- Manage User Access
- Billing
- Reference
- TiDB Cluster Architecture
- TiDB Cloud Cluster Limits and Quotas
- TiDB Limitations
- SQL
- Explore SQL with TiDB
- SQL Language Structure and Syntax
- SQL Statements
ADD COLUMN
ADD INDEX
ADMIN
ADMIN CANCEL DDL
ADMIN CHECKSUM TABLE
ADMIN CHECK [TABLE|INDEX]
ADMIN SHOW DDL [JOBS|QUERIES]
ALTER DATABASE
ALTER INDEX
ALTER TABLE
ALTER TABLE COMPACT
ALTER USER
ANALYZE TABLE
BATCH
BEGIN
CHANGE COLUMN
COMMIT
CHANGE DRAINER
CHANGE PUMP
CREATE [GLOBAL|SESSION] BINDING
CREATE DATABASE
CREATE INDEX
CREATE ROLE
CREATE SEQUENCE
CREATE TABLE LIKE
CREATE TABLE
CREATE USER
CREATE VIEW
DEALLOCATE
DELETE
DESC
DESCRIBE
DO
DROP [GLOBAL|SESSION] BINDING
DROP COLUMN
DROP DATABASE
DROP INDEX
DROP ROLE
DROP SEQUENCE
DROP STATS
DROP TABLE
DROP USER
DROP VIEW
EXECUTE
EXPLAIN ANALYZE
EXPLAIN
FLASHBACK TABLE
FLUSH PRIVILEGES
FLUSH STATUS
FLUSH TABLES
GRANT <privileges>
GRANT <role>
INSERT
KILL [TIDB]
MODIFY COLUMN
PREPARE
RECOVER TABLE
RENAME INDEX
RENAME TABLE
REPLACE
REVOKE <privileges>
REVOKE <role>
ROLLBACK
SELECT
SET DEFAULT ROLE
SET [NAMES|CHARACTER SET]
SET PASSWORD
SET ROLE
SET TRANSACTION
SET [GLOBAL|SESSION] <variable>
SHOW ANALYZE STATUS
SHOW [GLOBAL|SESSION] BINDINGS
SHOW BUILTINS
SHOW CHARACTER SET
SHOW COLLATION
SHOW [FULL] COLUMNS FROM
SHOW CREATE SEQUENCE
SHOW CREATE TABLE
SHOW CREATE USER
SHOW DATABASES
SHOW DRAINER STATUS
SHOW ENGINES
SHOW ERRORS
SHOW [FULL] FIELDS FROM
SHOW GRANTS
SHOW INDEX [FROM|IN]
SHOW INDEXES [FROM|IN]
SHOW KEYS [FROM|IN]
SHOW MASTER STATUS
SHOW PLUGINS
SHOW PRIVILEGES
SHOW [FULL] PROCESSSLIST
SHOW PROFILES
SHOW PUMP STATUS
SHOW SCHEMAS
SHOW STATS_HEALTHY
SHOW STATS_HISTOGRAMS
SHOW STATS_META
SHOW STATUS
SHOW TABLE NEXT_ROW_ID
SHOW TABLE REGIONS
SHOW TABLE STATUS
SHOW [FULL] TABLES
SHOW [GLOBAL|SESSION] VARIABLES
SHOW WARNINGS
SHUTDOWN
SPLIT REGION
START TRANSACTION
TABLE
TRACE
TRUNCATE
UPDATE
USE
WITH
- Data Types
- Functions and Operators
- Overview
- Type Conversion in Expression Evaluation
- Operators
- Control Flow Functions
- String Functions
- Numeric Functions and Operators
- Date and Time Functions
- Bit Functions and Operators
- Cast Functions and Operators
- Encryption and Compression Functions
- Locking Functions
- Information Functions
- JSON Functions
- Aggregate (GROUP BY) Functions
- Window Functions
- Miscellaneous Functions
- Precision Math
- Set Operations
- List of Expressions for Pushdown
- TiDB Specific Functions
- Clustered Indexes
- Constraints
- Generated Columns
- SQL Mode
- Table Attributes
- Transactions
- Views
- Partitioning
- Temporary Tables
- Cached Tables
- Character Set and Collation
- Read Historical Data
- System Tables
mysql
- INFORMATION_SCHEMA
- Overview
ANALYZE_STATUS
CLIENT_ERRORS_SUMMARY_BY_HOST
CLIENT_ERRORS_SUMMARY_BY_USER
CLIENT_ERRORS_SUMMARY_GLOBAL
CHARACTER_SETS
CLUSTER_INFO
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
DATA_LOCK_WAITS
DDL_JOBS
DEADLOCKS
ENGINES
KEY_COLUMN_USAGE
PARTITIONS
PROCESSLIST
REFERENTIAL_CONSTRAINTS
SCHEMATA
SEQUENCES
SESSION_VARIABLES
SLOW_QUERY
STATISTICS
TABLES
TABLE_CONSTRAINTS
TABLE_STORAGE_STATS
TIDB_HOT_REGIONS_HISTORY
TIDB_INDEXES
TIDB_SERVERS_INFO
TIDB_TRX
TIFLASH_REPLICA
TIKV_REGION_PEERS
TIKV_REGION_STATUS
TIKV_STORE_STATUS
USER_PRIVILEGES
VIEWS
- System Variables
- API Reference
- Storage Engines
- Dumpling
- Table Filter
- Troubleshoot Inconsistency Between Data and Indexes
- FAQs
- Release Notes
- Support
- Glossary
Index Selection
Reading data from storage engines is one of the most time-consuming steps during the SQL execution. Currently, TiDB supports reading data from different storage engines and different indexes. Query execution performance depends largely on whether you select a suitable index or not.
This document introduces how to select an index to access a table, and some related ways to control index selection.
Access tables
Before introducing index selection, it is important to understand the ways TiDB accesses tables, what triggers each way, what differences each way makes, and what the pros and cons are.
Operators for accessing tables
Operator | Trigger Conditions | Applicable Scenarios | Explanations |
---|---|---|---|
PointGet / BatchPointGet | When accessing tables in one or more single point ranges. | Any scenario | If triggered, it is usually considered as the fastest operator, since it calls the kvget interface directly to perform the calculations rather than calls the coprocessor interface. |
TableReader | None | Any scenario | It is generally considered as the least efficient operator that scans table data directly from the TiKV layer. It can be selected only if there is a range query on the _tidb_rowid column, or if there are no other operators for accessing tables to choose from. |
TableReader | A table has a replica on the TiFlash node. | There are fewer columns to read, but many rows to evaluate. | Tiflash is column-based storage. If you need to calculate a small number of columns and a large number of rows, it is recommended to choose this operator. |
IndexReader | A table has one or more indexes, and the columns needed for the calculation are included in the indexes. | When there is a smaller range query on the indexes, or when there is an order requirement for indexed columns. | When multiple indexes exist, a reasonable index is selected based on the cost estimation. |
IndexLookupReader | A table has one or more indexes, and the columns needed for calculation are not completely included in the indexes. | Same as IndexReader. | Since the index does not completely cover calculated columns, TiDB needs to retrieve rows from a table after reading indexes. There is an extra cost compared to the IndexReader operator. |
The TableReader operator is based on the _tidb_rowid
column index, and TiFlash uses a column storage index, so the selection of index is the selection of an operator for accessing tables.
Index selection rules
TiDB selects indexes based on rules or cost. The based rules include pre-rules and skyline-pruning. When selecting an index, TiDB tries the pre-rule first. If an index satisfies a pre-rule, TiDB directly selects this index. Otherwise, TiDB uses skyline-pruning to exclude unsuitable indexes, and then selects the index with the lowest cost based on the cost estimation of each operator that accesses tables.
Rule-based selection
Pre-rules
TiDB uses the following heuristic pre-rules to select indexes:
Rule 1: If an index satisfies "unique index with full match + no need to retrieve rows from a table (which means that the plan generated by the index is the IndexReader operator)", TiDB directly selects this index.
Rule 2: If an index satisfies "unique index with full match + the need to retrieve rows from a table (which means that the plan generated by the index is the IndexReader operator)", TiDB selects the index with the smallest number of rows to be retrieved from a table as a candidate index.
Rule 3: If an index satisfies "ordinary index + no need to retrieve rows from a table + the number of rows to be read is less than the value of a certain threshold", TiDB selects the index with the smallest number of rows to be read as a candidate index.
Rule 4: If only one candidate index is selected based on rule 2 and 3, select this candidate index. If two candidate indexes are respectively selected based on rule 2 and 3, select the index with the smaller number of rows to be read (the number of rows with index + the number of rows to be retrieved from a table).
The "index with full match" in the above rules means each indexed column has the equal condition. When executing the EXPLAIN FORMAT = 'verbose' ...
statement, if the pre-rules match an index, TiDB outputs a NOTE-level warning indicating that the index matches the pre-rule.
In the following example, because the index idx_b
meets the condition "unique index with full match + the need to retrieve rows from a table" in rule 2, TiDB selects the index idx_b
as the access path, and SHOW WARNING
returns a note indicating that the index idx_b
matches the pre-rule.
mysql> CREATE TABLE t(a INT PRIMARY KEY, b INT, c INT, UNIQUE INDEX idx_b(b));
Query OK, 0 rows affected (0.01 sec)
mysql> EXPLAIN FORMAT = 'verbose' SELECT b, c FROM t WHERE b = 3 OR b = 6;
+-------------------+---------+---------+------+-------------------------+------------------------------+
| id | estRows | estCost | task | access object | operator info |
+-------------------+---------+---------+------+-------------------------+------------------------------+
| Batch_Point_Get_5 | 2.00 | 8.80 | root | table:t, index:idx_b(b) | keep order:false, desc:false |
+-------------------+---------+---------+------+-------------------------+------------------------------+
1 row in set, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+-------+------+-------------------------------------------------------------------------------------------+
| Level | Code | Message |
+-------+------+-------------------------------------------------------------------------------------------+
| Note | 1105 | unique index idx_b of t is selected since the path only has point ranges with double scan |
+-------+------+-------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)
Skyline-pruning
Skyline-pruning is a heuristic filtering rule for indexes, which can reduce the probability of wrong index selection caused by wrong estimation. To judge an index, the following three dimensions are needed:
How many access conditions are covered by the indexed columns. An "access condition" is a where condition that can be converted to a column range. And the more access conditions an indexed column set covers, the better it is in this dimension.
Whether it needs to retrieve rows from a table when you select the index to access the table (that is, the plan generated by the index is IndexReader operator or IndexLookupReader operator). Indexes that do not retrieve rows from a table are better on this dimension than indexes that do. If both indexes need TiDB to retrieve rows from the table, compare how many filtering conditions are covered by the indexed columns. Filtering conditions mean the
where
condition that can be judged based on the index. If the column set of an index covers more access conditions, the smaller the number of retrieved rows from a table, and the better the index is in this dimension.Select whether the index satisfies a certain order. Because index reading can guarantee the order of certain column sets, indexes that satisfy the query order are superior to indexes that do not satisfy on this dimension.
For these three dimensions above, if the index idx_a
performs no worse than the index idx_b
in all three dimensions and performs better than idx_b
in one dimension, then idx_a
is preferred. When executing the EXPLAIN FORMAT = 'verbose' ...
statement, if skyline-pruning excludes some indexes, TiDB outputs a NOTE-level warning listing the remaining indexes after the skyline-pruning exclusion.
In the following example, the indexes idx_b
and idx_e
are both inferior to idx_b_c
, so they are excluded by skyline-pruning. The returned result of SHOW WARNING
displays the remaining indexes after skyline-pruning.
mysql> CREATE TABLE t(a INT PRIMARY KEY, b INT, c INT, d INT, e INT, INDEX idx_b(b), INDEX idx_b_c(b, c), INDEX idx_e(e));
Query OK, 0 rows affected (0.01 sec)
mysql> EXPLAIN FORMAT = 'verbose' SELECT * FROM t WHERE b = 2 AND c > 4;
+-------------------------------+---------+---------+-----------+------------------------------+----------------------------------------------------+
| id | estRows | estCost | task | access object | operator info |
+-------------------------------+---------+---------+-----------+------------------------------+----------------------------------------------------+
| IndexLookUp_10 | 33.33 | 738.29 | root | | |
| ├─IndexRangeScan_8(Build) | 33.33 | 2370.00 | cop[tikv] | table:t, index:idx_b_c(b, c) | range:(2 4,2 +inf], keep order:false, stats:pseudo |
| └─TableRowIDScan_9(Probe) | 33.33 | 2370.00 | cop[tikv] | table:t | keep order:false, stats:pseudo |
+-------------------------------+---------+---------+-----------+------------------------------+----------------------------------------------------+
3 rows in set, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+-------+------+------------------------------------------------------------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------------------------------------------------------------+
| Note | 1105 | [t,idx_b_c] remain after pruning paths for t given Prop{SortItems: [], TaskTp: rootTask} |
+-------+------+------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)
Cost estimation-based selection
After using the skyline-pruning rule to rule out inappropriate indexes, the selection of indexes is based entirely on the cost estimation. The cost estimation of accessing tables requires the following considerations:
- The average length of each row of the indexed data in the storage engine.
- The number of rows in the query range generated by the index.
- The cost for retrieving rows from a table.
- The number of ranges generated by index during the query execution.
According to these factors and the cost model, the optimizer selects an index with the lowest cost to access the table.
Common tuning problems with cost estimation based selection
The estimated number of rows is not accurate?
This is usually due to stale or inaccurate statistics. You can re-execute the
analyze table
statement or modify the parameters of theanalyze table
statement.Statistics are accurate, and reading from TiFlash is faster, but why does the optimizer choose to read from TiKV?
At present, the cost model of distinguishing TiFlash from TiKV is still rough. You can decrease the value of
tidb_opt_seek_factor
parameter, then the optimizer prefers to choose TiFlash.The statistics are accurate. Index A needs to retrieve rows from tables, but it actually executes faster than Index B that does not retrieve rows from tables. Why does the optimizer choose Index B?
In this case, the cost estimation may be too large for retrieving rows from tables. You can decrease the value of
tidb_opt_network_factor
parameter to reduce the cost of retrieving rows from tables.
Control index selection
The index selection can be controlled by a single query through Optimizer Hints.
USE_INDEX
/IGNORE_INDEX
can force the optimizer to use / not use certain indexes.FORCE_INDEX
andUSE_INDEX
have the same effect.READ_FROM_STORAGE
can force the optimizer to choose the TiKV / TiFlash storage engine for certain tables to execute queries.