- Docs Home
- About TiDB Cloud
- Get Started
- Develop Applications
- Overview
- Quick Start
- Build a TiDB Developer Cluster
- CRUD SQL in TiDB
- Build a Simple CRUD App with TiDB
- Example Applications
- Connect to TiDB
- Design Database Schema
- Write Data
- Read Data
- Transaction
- Optimize
- Troubleshoot
- Reference
- Cloud Native Development Environment
- Manage Cluster
- Plan Your Cluster
- Create a TiDB Cluster
- Connect to Your TiDB Cluster
- Set Up VPC Peering Connections
- Use an HTAP Cluster with TiFlash
- Scale a TiDB Cluster
- Upgrade a TiDB Cluster
- Delete a TiDB Cluster
- Use TiDB Cloud API (Beta)
- Migrate Data
- Import Sample Data
- Migrate Data into TiDB
- Configure Amazon S3 Access and GCS Access
- Migrate from MySQL-Compatible Databases
- Migrate Incremental Data from MySQL-Compatible Databases
- Migrate from Amazon Aurora MySQL in Bulk
- Import or Migrate from Amazon S3 or GCS to TiDB Cloud
- Import CSV Files from Amazon S3 or GCS into TiDB Cloud
- Import Apache Parquet Files from Amazon S3 or GCS into TiDB Cloud
- Troubleshoot Access Denied Errors during Data Import from Amazon S3
- Export Data from TiDB
- Back Up and Restore
- Monitor and Alert
- Overview
- Built-in Monitoring
- Built-in Alerting
- Third-Party Monitoring Integrations
- Tune Performance
- Overview
- Analyze Performance
- SQL Tuning
- Overview
- Understanding the Query Execution Plan
- SQL Optimization Process
- Overview
- Logic Optimization
- Physical Optimization
- Prepare Execution Plan Cache
- Control Execution Plans
- TiKV Follower Read
- Coprocessor Cache
- Garbage Collection (GC)
- Tune TiFlash performance
- Manage User Access
- Billing
- Reference
- TiDB Cluster Architecture
- TiDB Cloud Cluster Limits and Quotas
- TiDB Limitations
- SQL
- Explore SQL with TiDB
- SQL Language Structure and Syntax
- SQL Statements
ADD COLUMNADD INDEXADMINADMIN CANCEL DDLADMIN CHECKSUM TABLEADMIN CHECK [TABLE|INDEX]ADMIN SHOW DDL [JOBS|QUERIES]ALTER DATABASEALTER INDEXALTER TABLEALTER TABLE COMPACTALTER USERANALYZE TABLEBATCHBEGINCHANGE COLUMNCOMMITCHANGE DRAINERCHANGE PUMPCREATE [GLOBAL|SESSION] BINDINGCREATE DATABASECREATE INDEXCREATE ROLECREATE SEQUENCECREATE TABLE LIKECREATE TABLECREATE USERCREATE VIEWDEALLOCATEDELETEDESCDESCRIBEDODROP [GLOBAL|SESSION] BINDINGDROP COLUMNDROP DATABASEDROP INDEXDROP ROLEDROP SEQUENCEDROP STATSDROP TABLEDROP USERDROP VIEWEXECUTEEXPLAIN ANALYZEEXPLAINFLASHBACK TABLEFLUSH PRIVILEGESFLUSH STATUSFLUSH TABLESGRANT <privileges>GRANT <role>INSERTKILL [TIDB]MODIFY COLUMNPREPARERECOVER TABLERENAME INDEXRENAME TABLEREPLACEREVOKE <privileges>REVOKE <role>ROLLBACKSELECTSET DEFAULT ROLESET [NAMES|CHARACTER SET]SET PASSWORDSET ROLESET TRANSACTIONSET [GLOBAL|SESSION] <variable>SHOW ANALYZE STATUSSHOW [GLOBAL|SESSION] BINDINGSSHOW BUILTINSSHOW CHARACTER SETSHOW COLLATIONSHOW [FULL] COLUMNS FROMSHOW CREATE SEQUENCESHOW CREATE TABLESHOW CREATE USERSHOW DATABASESSHOW DRAINER STATUSSHOW ENGINESSHOW ERRORSSHOW [FULL] FIELDS FROMSHOW GRANTSSHOW INDEX [FROM|IN]SHOW INDEXES [FROM|IN]SHOW KEYS [FROM|IN]SHOW MASTER STATUSSHOW PLUGINSSHOW PRIVILEGESSHOW [FULL] PROCESSSLISTSHOW PROFILESSHOW PUMP STATUSSHOW SCHEMASSHOW STATS_HEALTHYSHOW STATS_HISTOGRAMSSHOW STATS_METASHOW STATUSSHOW TABLE NEXT_ROW_IDSHOW TABLE REGIONSSHOW TABLE STATUSSHOW [FULL] TABLESSHOW [GLOBAL|SESSION] VARIABLESSHOW WARNINGSSHUTDOWNSPLIT REGIONSTART TRANSACTIONTABLETRACETRUNCATEUPDATEUSEWITH
- Data Types
- Functions and Operators
- Overview
- Type Conversion in Expression Evaluation
- Operators
- Control Flow Functions
- String Functions
- Numeric Functions and Operators
- Date and Time Functions
- Bit Functions and Operators
- Cast Functions and Operators
- Encryption and Compression Functions
- Locking Functions
- Information Functions
- JSON Functions
- Aggregate (GROUP BY) Functions
- Window Functions
- Miscellaneous Functions
- Precision Math
- Set Operations
- List of Expressions for Pushdown
- TiDB Specific Functions
- Clustered Indexes
- Constraints
- Generated Columns
- SQL Mode
- Table Attributes
- Transactions
- Views
- Partitioning
- Temporary Tables
- Cached Tables
- Character Set and Collation
- Read Historical Data
- System Tables
mysql- INFORMATION_SCHEMA
- Overview
ANALYZE_STATUSCLIENT_ERRORS_SUMMARY_BY_HOSTCLIENT_ERRORS_SUMMARY_BY_USERCLIENT_ERRORS_SUMMARY_GLOBALCHARACTER_SETSCLUSTER_INFOCOLLATIONSCOLLATION_CHARACTER_SET_APPLICABILITYCOLUMNSDATA_LOCK_WAITSDDL_JOBSDEADLOCKSENGINESKEY_COLUMN_USAGEPARTITIONSPROCESSLISTREFERENTIAL_CONSTRAINTSSCHEMATASEQUENCESSESSION_VARIABLESSLOW_QUERYSTATISTICSTABLESTABLE_CONSTRAINTSTABLE_STORAGE_STATSTIDB_HOT_REGIONS_HISTORYTIDB_INDEXESTIDB_SERVERS_INFOTIDB_TRXTIFLASH_REPLICATIKV_REGION_PEERSTIKV_REGION_STATUSTIKV_STORE_STATUSUSER_PRIVILEGESVIEWS
- System Variables
- API Reference
- Storage Engines
- Dumpling
- Table Filter
- Troubleshoot Inconsistency Between Data and Indexes
- FAQs
- Release Notes
- Support
- Glossary
Coprocessor Cache
Starting from v4.0, the TiDB instance supports caching the results of the calculation that is pushed down to TiKV (the Coprocessor Cache feature), which can accelerate the calculation process in some scenarios.
Configuration
You can configure Coprocessor Cache via the tikv-client.copr-cache configuration items in the TiDB configuration file. For details about how to enable and configure Coprocessor Cache, see TiDB Configuration File.
The Coprocessor Cache feature is enabled by default. The maximum size of the data that can be cached is 1000 MB.
Feature description
When a SQL statement is executed on a single TiDB instance for the first time, the execution result is not cached.
Calculation results are cached in the memory of TiDB. If the TiDB instance is restarted, the cache becomes invalid.
The cache is not shared among TiDB instances.
Only push-down calculation result is cached. Even if cache is hit, TiDB still need to perform subsequent calculation.
The cache is in the unit of Region. Writing data to a Region causes the Region cache to be invalid. For this reason, the Coprocessor Cache feature mainly takes effect on the data that rarely changes.
When push-down calculation requests are the same, the cache is hit. Usually in the following scenarios, the push-down calculation requests are the same or partially the same:
The SQL statements are the same. For example, the same SQL statement is executed repeatedly.
In this scenario, all the push-down calculation requests are consistent, and all requests can use the push-down calculation cache.
The SQL statements contain a changing condition, and the other parts are consistent. The changing condition is the primary key of the table or the partition.
In this scenario, some of the push-down calculation requests are the same with some previous requests, and these calculation requests can use the cached (previous) push-down calculation result.
The SQL statements contain multiple changing conditions and the other parts are consistent. The changing conditions exactly match a compound index column.
In this scenario, some of the push-down calculation requests are the same with some previous requests, and these calculation requests can use the cached (previous) push-down calculation result.
This feature is transparent to users. Enabling or disabling this feature does not affect the calculation result and only affects the SQL execution time.
Check the cache effect
You can check the cache effect of Coprocessor by executing EXPLAIN ANALYZE or viewing the Grafana monitoring panel.
Use EXPLAIN ANALYZE
You can view the cache hit rate in Operators for accessing tables by using the EXPLAIN ANALYZE statement. See the following example:
EXPLAIN ANALYZE SELECT * FROM t USE INDEX(a);
+-------------------------------+-----------+---------+-----------+------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------+-----------------------+------+
| id | estRows | actRows | task | access object | execution info | operator info | memory | disk |
+-------------------------------+-----------+---------+-----------+------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------+-----------------------+------+
| IndexLookUp_6 | 262400.00 | 262400 | root | | time:620.513742ms, loops:258, cop_task: {num: 4, max: 5.530817ms, min: 1.51829ms, avg: 2.70883ms, p95: 5.530817ms, max_proc_keys: 2480, p95_proc_keys: 2480, tot_proc: 1ms, tot_wait: 1ms, rpc_num: 4, rpc_time: 10.816328ms, copr_cache_hit_rate: 0.75} | | 6.685169219970703 MB | N/A |
| ├─IndexFullScan_4(Build) | 262400.00 | 262400 | cop[tikv] | table:t, index:a(a, c) | proc max:93ms, min:1ms, p80:93ms, p95:93ms, iters:275, tasks:4 | keep order:false, stats:pseudo | 1.7549400329589844 MB | N/A |
| └─TableRowIDScan_5(Probe) | 262400.00 | 0 | cop[tikv] | table:t | time:0ns, loops:0 | keep order:false, stats:pseudo | N/A | N/A |
+-------------------------------+-----------+---------+-----------+------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------+-----------------------+------+
3 rows in set (0.62 sec)
The column execution info of the execution result gives the copr_cache_hit_ratio information, which indicates the hit rate of the Coprocessor Cache. The 0.75 in the above example means that the hit rate is about 75%.
View the Grafana monitoring panel
In Grafana, you can see the copr-cache panel in the distsql subsystem under the tidb namespace. This panel monitors the number of hits, misses, and cache discards of the Coprocessor Cache in the entire cluster.